
End-to-End Stable Imitation Learning via
Autonomous Neural Dynamic Policies

Dionis Totsila1†∗, Konstantinos Chatzilygeroudis2†∗, Denis Hadjivelichkov3, Valerio Modugno3,
Ioannis Hatzilygeroudis1, and Dimitrios Kanoulas3

Abstract—State-of-the-art sensorimotor learning algorithms
offer policies that can often produce unstable behaviors, damag-
ing the robot and/or the environment. Traditional robot learning,
on the contrary, relies on dynamical system-based policies that
can be analyzed for stability/safety. Such policies, however,
are neither flexible nor generic and usually work only with
proprioceptive sensor states. In this work, we bridge the gap
between generic neural network policies and dynamical system-
based policies, and we introduce Autonomous Neural Dynamic
Policies (ANDPs) that: (a) are based on autonomous dynamical
systems, (b) always produce asymptotically stable behaviors, and
(c) are more flexible than traditional stable dynamical system-
based policies. ANDPs are fully differentiable, flexible generic-
policies that can be used in imitation learning setups while
ensuring asymptotic stability. In this paper, we explore the
flexibility and capacity of ANDPs in several imitation learning
tasks including experiments with image observations. The results
show that ANDPs combine the benefits of both neural network-
based and dynamical system-based methods.

Index Terms—Robot Learning, Imitation Learning, Dynamical
System-Based Policies, Lyapunov Stability, Data-Efficient Learn-
ing

I. INTRODUCTION

Choosing the appropriate policy structure is crucial for
effective and practical robot learning [1]–[3]. Currently, ei-
ther in the context of Reinforcement Learning (RL) [4] or
Imitation Learning (IL) [5], the standard choice is to use
Neural Networks (NNs). NNs possess the flexibility needed
to learn complicated behaviors as well as the generalizability
required to be able to run the same algorithms in any robot
or scenario. However, NN-based policies are black-box and
cannot ensure well-behaved trajectories, meaning that their
behavior cannot be predicted in unforeseen situations. As a
result, RL algorithms often make harmful decisions for the
robot and/or the environment, especially during initial learning
stages.

This comes in contrast with traditional robot learning
literature [6], where usually in the context of IL/Learning
from Demonstrations (LfD) the policy behavior is shaped
according to some well-defined criteria. For example, produc-
ing behaviors that are guaranteed to asymptotically converge
to an attractor is an important concept of traditional robot

∗Corresponding authors: dtotsila@upnet.gr
costashatz@upatras.gr
† Equal Contribution
1Computer Engineering and Informatics Department (CEID), University of

Patras, Greece
2CILab, Department of Mathematics, University of Patras, Greece
3RPL Lab, University College London, United Kingdom

Autonomous Neural Dynamic Policy

Environment

Policy outputControllable Part

Non-Controllable Part

State Vector

Fig. 1. Autonomous Neural Dynamic Policy Outline.

learning [6], [7]. The main building tool for this is a Dynamical
System (DS), and the main idea is to represent the policy to
be learned as a DS. This gives us the ability to reason about
the policy in terms familiar to control theory and make proofs
about properties that we care about (e.g., for asymptotic sta-
bility) [7]. This concept has been explored in robotic scenarios
with two main different approaches: (a) time-dependent DSs
that mostly fall under the framework of Dynamic Movement
Primitives (DMPs) [8]–[10], and (b) autonomous DSs where
the input is only dependent on the current state [7], [11]. Both
approaches are able to provide asymptotic stability guarantees,
while autonomous DSs’ reactiveness does not depend on time.
Traditionally, both approaches have been utilized mainly in
Imitation Learning (IL)/Learning from Demonstrations (LfD)
scenarios [7], [12]–[16], but recently there was an attempt to
use DMPs with RL [17], [18].

In this work, we aim at developing a novel policy represen-
tation that:

1) Produces behaviors that are guaranteed to asymptotically
converge to an attractor;

2) Is universal, meaning that any robot/embodied agent can
use it;

3) Can accept any observation space (e.g. RGB images),
and the input is not limited only to the feedback of robot
states.

The first feature guarantees that the policy does not produce
unpredictable behaviors outside the trained data, but will try to
go toward the attractor, which is a critical aspect for robotic
applications. Even if this feature cannot guarantee that the
robot will never try anything harmful (e.g., very big velocity
command), it is a good stepping stone towards having safe
robot behaviors. The second characteristic is important as it
will make the policy usable by any robotic mechanism and

ar
X

iv
:2

30
5.

12
88

6v
1 

 [
cs

.R
O

] 
 2

2 
M

ay
 2

02
3



any scenario. The last characteristic is important for practical
robotic applications since traditionally policies that provide
stability guarantees are not straightforward to utilize with
states that are not limited to proprioceptive sensor states.

Inspired by the LfD literature and the usage of DSs, we
attempt to integrate them with the representation capabilities
of NNs, with the intention of creating a policy with the
aforementioned properties. To achieve this goal:

• We assume that the state of the system can be divided
into a part that is directly controlled (e.g., joint positions),
and a part that can only be observed and/or indirectly
controlled (e.g., a box);

• We represent the policy as a non-linear combination of
linear systems; this gives us the ability to reason about the
stability of the produced behavior, while also being able
to exploit the representation abilities of NNs to combine
the elementary DSs effectively.

We call this new type of policies Autonomous Neural Dynamic
Policies (ANDPs) because they: (a) are based on dynamical
systems, (b) are generic policies, (c) are based on neural net-
works, and (d) do not depend on the time (thus, autonomous).
The main novelty of ANDPs lies in their ability to accept any
input space (even images), while still producing asymptotically
stable behaviors of the controllable state. This is achieved
by imposing constraints on the elementary linear DSs, while
making the policy expressive by using NNs to combine them.
Finally, we perform some reparameterizations to “eliminate”
the constraints and to be able to optimize ANDPs using
gradient-based unconstrained optimization.

II. RELATED WORK

The choice of the policy structure plays an important role
for the effectiveness of learning in practical robot applications.
When designing the policy structure, there is always a tradeoff
between having a representation that is expressive, and one that
provides a space that is efficiently searchable [2].

The most obvious way to make the policy easy to be
searched (or optimized) is to hand-design it. In [19], for
example, the authors design by hand a policy for a ball
acquisition task, which has only four parameters. This low-
dimensional policy can be easily optimized, but with only four
parameters it might not possess big expressiveness. Moreover,
if we are faced with a different robot/task, we need to re-design
the policy from scratch. On the other hand, using a function
approximator (e.g. a neural network) to describe the policy,
enables us to easily increase the expressiveness and generality
of the policy, but can make the policy difficult to optimize for.

There are numerous works that describe best practices and
policy structures that ease the learning process. In [3] the
authors thoroughly evaluate different action spaces (with the
corresponding low-level controllers, and thus policy structures)
in a wide range of scenarios. They conclude that operating in
end-effector space combined with low-level controllers make
the learning process faster, more robust, and provide easier
transfer from simulation to the physical world and between
robots. The authors in [1] reach to similar conclusions in a

related study that performs a comparison between different ac-
tion spaces for manipulation tasks. Overall, it is clear from the
literature that in order to learn effectively in practical robotic
applications, we need a structured policy representation.

Dynamic Movement Primitives (DMPs) [8]–[10] provide
a framework for structured policy types that are basically a
dynamical system. As such, we can insert desired properties
that can make our system behave in specific ways. DMPs
are split into two systems: (a) the canonical system (which is
usually a springer-damper system), and (b) the transformation
system. The canonical system represents the movement phase
s, which starts at 1 and converges to 0 over time. The
transformation systems combine a spring-damper system with
a function approximator (e.g., NNs) which, when integrated,
generates accelerations. Multi-dimensional DMPs are achieved
by coupling multiple transformation systems with one canoni-
cal system. DMPs can be used in the end-effector and the joint
angle space. There are numerous successful implementations
of DMPs mainly in IL/LfD scenarios covering a wide range
of tasks [10], [13], [14] and even multi-task cases [12], [20].

DMPs, however, are time-dependent and thus they may pro-
duce undesirable behaviors; for example, a policy that cannot
adapt to perturbations after some time. Stable Estimator of
Dynamical Systems (SEDS) [7] explores how to use dynamical
systems in order to define autonomous (i.e., time-independent)
controllers (or policies) that are asymptotically stable. The
main idea of the algorithm is to use a finite mixture of
Gaussian functions (Gaussian Mixture Models - GMMs) as the
policy, ξ̇ = πseds(ξ), with specific properties that satisfy some
stability guarantees. SEDS, however, requires demonstrated
data in order to optimize the policy (i.e., data gathered from
experts), although similar ideas have been used within the
RL framework [21]. SEDS and its variants [15], [22] have
provided effective solutions to difficult tasks ranging from
point-to-point motions [7] to humanoid navigation [23] and
following force profiles [16]. One of the main limitations of
SEDS is the accuracy vs. stability dilemma, i.e., it performs
poorly in highly non-linear motions that contain high curva-
tures or that are non-monotonic. This is mainly because of
the constraints SEDS imposes on the structure of the GMMs.
Recent variants of SEDS, and in particular LPV-DS [15], [22],
attempt to relax the constraints by disconnecting the learning
of the weighting function from the elementary DSs; LPV-DS
still uses GMMs for learning the functions.

Recently, Bahl et al. [17] proposed a method to combine
neural networks with DMPs. The main idea is to create a high-
level controller with NNs that takes as input an unstructured
state and selects parameters of a DMP that acts as the low-
level controller. Their method, called Neural Dynamic Policies
(NDPs), was able to learn multiple LfD and RL scenarios
effectively. In a recent extension [18], the authors provide
a hierarchical formulation of their method that can be used
to solve more complex tasks. To the best of our knowledge,
this work proposes one of the first methods that effectively
combine NNs with DSs and provide the first general-purpose
policy (i.e., it can be used with almost any input and any robot)



that is based on DSs. However, since their policy changes the
dynamical system every X steps there are still no theoretical
guarantees for stability, but mostly rely on the data-driven
capabilities of the NNs to capture this type of behaviors.

In this paper, we take inspiration from LPV-DS and NDPs
and provide a policy structure, called Autonomous Neural
Dynamic Policies (ANDPs), that (a) always produces asymp-
totically stable behaviors for the controllable part of the state,
and that (b) is a general purpose policy that can work with any
action space and can accept arbitrary inputs (e.g., images).

III. PROBLEM FORMULATION

We assume discrete-time dynamical systems that can be de-
scribed by transition dynamics of the form:

xt+1 = f(xt,ut) +w (1)

where the system is at state xt ∈ RE at time t, takes control
input ut ∈ RU and ends up at state xt+1 at time t+ 1, w is
i.i.d. Gaussian system noise, and f is a function that describes
the unknown transition dynamics.

We assume that the system is controlled through a parame-
terized policy u = π(x|θ) that is followed for M steps (θ are
the parameters of the policy). When following a particular
policy for M time-steps from an initial state distribution
p(x0), the system’s states and actions jointly form trajectories
τ = (x0,u0,x1,u1, . . . ,xM−1), which are often also called
rollouts or paths.

In this work, we define a novel policy structure and learn-
ing procedure (called ANDPs) with stability guarantees. In
an imitation learning scenario, we assume access to a few
demonstrated trajectories {τ i}i=1,...,K , and we want to find
the policy parameterization θ that “mimics” the demonstrated
trajectories as well as possible. In this work, we assume
having access only to the states of the system, xt, and not
of the control signals, ut. In other words, we have trajectories
{si}i=1,...,K of the form s = (x0,x1, . . . ,xM−1). This makes
the problem slightly more difficult and usually enforces the use
of a low-level controller [24].

IV. PROPOSED POLICY STRUCTURE

We make the assumption that the state of the system
can be split into two parts: (a) a part that can be directly
controlled (e.g., positions and velocities of the end-effector),
and (b) a part that can only be observed and/or indirectly
controlled (e.g., obstacles/objects). In particular (we omit the
time notation, t, for clarity):

x =

[
xc

xnc

]
∈ Rdc+dnc , (2)

where xc is the part of the state that can be directly controlled
and xnc is the part of the state that can only be observed. dc
and dnc are the state-space dimensions for the controllable and
non-controllable parts, respectively (dc + dnc = E).

We define the control policy as a dynamical system with a
fixed attractor x∗

c (formulated as a weighted sum of elementary
linear dynamical systems):

ẋc = π(x) =

N∑
i=1

wi(x)Ai

(
x∗
c − xc

)
(3)

where N is the number of elementary dynamical systems,
wi(x) ∈ R are state-dependent weighting functions, and
Ai ∈ Rdc×dc , x∗

c ∈ Rdc .
The control policy, π(x) (Fig. 1), defines the desired

velocity profile that the controllable state xc should follow.
Depending on the state representation one can directly use
the output for commanding the robot, use a PD controller,
or use some inverse dynamics/kinematics model. Note, that
the controllable state xc can also contain velocities (e.g.,
xc = {ξ, ξ̇}, where ξ is the end-effector translation) and in
that case the system is a second order DS. Although in this
work we explore first-order DSs, our formulation allows for
second-order DS systems.

Theorem 1. Assume that the controllable part of a state
trajectory follows the policy as defined in Eq. 3. Then, the
function described by Eq. 3 is asymptotically stable to x∗

c if{
Ai +AT

i � 0 the symmetric part of A is psd
wi(x) > 0, i = 1, .., N,∀x ∈ RE

(4)

Proof. The proof follows classical Lyapunov analysis similar
to [22].

The results of the above theorem can be described as “The
controllable part of the system will always converge to the
fixed attractor x∗

c”. Although this does not guarantee that the
whole system state will converge to a desired state, this is
an important property for a policy to have, as it will always
generate commands that will eventually drive the controllable
part of the system to a stable point. It is important to note
that this property holds if the controllable system can follow
the commanded velocities perfectly, and does not take into
account the properties of a possible low-level controller (e.g.,
a controller based on the pseudoinverse of the Jacobian for
end-effector control) or the rest of the environment. This is,
however, common in the LfD literature since designing a
policy that can guarantee the stability of the whole system
and take into account the properties of the low-level controller
is a challenging task and would require bulk approximations
to be made [2], [24]. Nevertheless, in all of our experiments,
we never observed diverging motions and we did not have to
tune the low-level controllers to avoid such situations. Overall,
these limitations do not seem to have a big impact on the
resulting behaviors and we were able to learn a wide range
of motions using different low-level controllers (in joint- and
task-space).

A. ANDPs via Neural Networks

The main intuition of ANDPs is to combine the power of
neural networks to learn from data while keeping the stability



guarantees of the traditional DS-based policies. In order to be
able to represent the ANDPs (Eq. 3) with a neural network, we
have to: (a) find the “learnable” parameters, (b) make sure that
the policy is fully differentiable, and (c) handle the constraints
of Eq. 4 properly.

In order to define the learnable parameters, we need to
identify parameters of Eq. 3. First, the matrices Ai do not
depend on the state, and thus we can directly optimize for their
parameters. Second, in order to define each wi(x), we use one
neural network for all of them. More concretely, we define a
neural network Ψ which takes input a full system state x and
predicts a vector W ∈ RN . In other words, W = Ψ(x|ψ),
where ψ are the parameters of the neural network. The i-th
element of the W vector represents wi(x). So, the total
learnable parameters of the policy are θ = {A1, . . . ,AN ,ψ}.
It is easy to see that since each Ai is a simple matrix, and
ψ parameters of a neural network, the whole policy is fully
differentiable.

One can also add the attractor point, x∗
c , to the optimization

variables. The policy would still be differentiable (x∗
c is a free

parameter). In our experiments, we observed that in IL/LfD
scenarios, that would require a complicated loss function, and
thus we left this exploration for future work. In this paper, we
assume a fixed attractor that is equal to the average of the last
points of all the demonstrated trajectories.

The last element is to be able to optimize the parameters θ
given some objective function, while respecting the constraints
defined in Eq. 4. In the general case, this would require a
constrained optimization problem to be performed, but this can
be challenging to do for high-dimensional parameter spaces,
such as the ones generated by neural networks. In order to
bypass this issue but still respect the constraints, we perform
the following steps:

• First, each wi should be positive. We can easily generate
positive numbers by adding an exp layer after the last
layer of Ψ. In this work, we always use a softmax layer
as the last layer of Ψ that generates positive values that
sum to one; it also makes more sense as we want to
combine the elementary DSs that Ai define.

• We, now, need to satisfy the constraint Ai + AT
i � 0.

If we assume real matrices and define Ai = Bi +Ci −
CT

i , where Bi is a symmetric positive definite matrix
(no restrictions for Ci), we can see that Ai + AT

i =
Bi + Ci − CT

i + Bi + CT
i − Ci = 2Bi � 0. Bi

is symmetric, thus Bi = BT
i , and Ci − CT

i defines a
skew symmetric matrix. This gives us the ability to freely
optimize for the parameters of Ci. So, we are left with
handling the case of optimizing for a symmetric positive
definite matrix, Bi.

• If we assume real matrices, a symmetric positive definite
matrix Bi can be factorized as Bi = LiL

T
i (Cholesky

decomposition), where Li is a lower triangular matrix
with real and positive diagonal entries. It is easy to
see that we can optimize for the parameters of Li and
reconstruct Bi that we need.

Using the above steps we can now perform unconstrained
optimization while still ensuring that the constraints in Eq. 4
are fulfilled. This is important as we are more confident that
the optimization will converge to good solutions.

V. EXPERIMENTS

In this paper, we focus on IL/LfD scenarios. Through the
conducted experiments, we attempt to answer the following
questions:

1) Do ANDPs produce stable behaviors? How well can
they reproduce the initial demonstrations?

2) Can ANDPs learn complex movements for a realistic
robotic task? Are they robust?

3) Can ANDPs accept arbitrary inputs like 3D orientations?
Can they accept even raw images?

4) Can ANDPs work on a physical robot?
In order to answer the first three questions, we devise a

multi-task scenario where the goal is for ANDPs to learn
multiple tasks into one policy; we use the DART open-source
simulator [25]. The idea is to use the non-controllable part
of the state xnc to ”define” which task we want the robot to
perform. So for each task, xnc is an image captured with a
camera that is mounted to the robot’s end-effector and points
directly to a sign that displays the picture that corresponds
to the particular movement. We also test the reactiveness of
ANDPs by changing the image in the middle of the evaluation
pipeline, and the robustness of the learned policies by inserting
force perturbations.

In order to answer the fourth question, we devise the
following experiment: We use a physical Franka Panda robot
to collect three demonstrations with kinesthetic guidance for
a pouring task and learn a policy with data collected from a
physical setup. In this task the robot needs to pour liquid from
one cup into a bowl and we control the robot in end-effector
space with changing orientation.

A. Multi-Task Learning

In this section, we want to determine whether ANDPs have
the capability of learning intricate 3D motions, demonstrate the
flexibility of ANDPs compared to traditional LfD methods,
and exhibit the reactive and resilient nature of the learned
policy against perturbations. We collect one demonstration for
each of the following movements: a sinusoidal motion, a linear
motion, and a curvilinear motion, so that we can devise a
multi-task scenario where the goal is for ANDPS to learn
multiple tasks into one policy. In essence, we use the non-
controllable part of the state to ”define” which task we want
the robot to perform. In order to create the labels, we simulate
a sign with the image corresponding to every motion across the
robot, we then attach a camera to the end-effector of the arm
facing towards the sign and we shoot a grayscale image for
every sample. We take all 3 demonstrations and we have a state
of the form: x = {xnc,xc} = {I, x, y}, where I ∈ R64×64

is a grayscale image. We use a Convolutional Neural Network
(CNN) to model the weight function Ψ; in particular, we use
a LeNet [26] variation. We learn one model for all three tasks.



t=0s

Non Controllable Part

0 2 4 6

0.4

0.6

EE
F

x-axis

0 2 4 6
0.00

0.25

0.50
y-axis

0 2 4 6
0.25

0.50

z-axis

t=0s 0 2 4 6

0.4

0.6

EE
F

0 2 4 6
0.00

0.25

0.50

0 2 4 6
0.25

0.50

t=0s 0 2 4 6
time (s)

0.4

0.6
EE

F

0 2 4 6
time (s)

0.00

0.25

0.50

0 2 4 6
time (s)

0.25

0.50

Multi-Task Experiment via ANDPs

Demonstration Evaluation Target

Fig. 2. Multi-task scenario with image inputs. All tasks are learned with a single model that can distinguish between tasks given an image input.

In Fig. 2, we see that ANDPs are able to learn to distinguish
the three tasks while always ensuring convergence to the fixed
attractor. Moreover, the learned policy is reactive and robust to
perturbations. To showcase the broader concept of reactiveness
we start an evaluation run with the image corresponding to the
linear movement displayed, at t = 1s we switch the displayed
image to the one representing the sinusoidal movement. We
observe that the robot changed its motion to follow the shape
of the corresponding movement (Fig. 3).

t=0s

Non Controllable Part

t=1s 0 2 4 6
time (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

EE
F

0 2 4 6
time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6
time (s)

0.2

0.3

0.4

0.5

0.6

0.7
Reactiveness of ANDPs on changes in the Non Controllable part of the state

Time of change Evaluation Target

Fig. 3. Reactiveness of ANDPs on changes in the non-controllable part of
the state, we switch from the line image to the sine image at t=1s.

To show that ANDPs are robust and reactive to force
perturbations we apply an external force to the robot twice
during the execution: once at the beginning of the behavior,
and once at t = 5 s. We observe that the robot is able to
converge to the attractor and follow the overall shape of the
behavior (Fig. 4).

t=0s

Non Controllable Part

0 2 4 6 8 10
time (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

EE
F

0 2 4 6 8 10
time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10
time (s)

0.2

0.3

0.4

0.5

0.6

0.7
Reactiveness of ANDPs on changes in the Non Controllable part of the state

Time of Force application Evaluation Demonstration Target

Fig. 4. Reactiveness of ANDPs on external force perturbations we apply an
external force twice, one at t = 0s and t = 5s.

B. Physical Robot Experiment

In this section, we want to identify whether ANDPs: (a)
work with realistic demonstrations, and (b) can learn a task

that requires precision and end-effector orientation control.
For those reasons, we collect three demonstrations with
kinesthetic guidance on the physical robot performing a
pouring task: the robot holds a cup filled with liquid and
needs to pour it inside a bowl (Fig. 5). For safety, we “emulate”
the liquid with small plastic objects. We then learn a policy
with ANDPs using the collected demonstrations with a state
of the form x ≡ xc = {x, y, z, rx, ry, rz}, where {x, y, z} is
the end-effector translation and {rx, ry, rz} is the end-effector
orientation expressed in Euler XYZ angles.

Collecting Pouring Task Demonstrations with Kinesthetic Guidance

Fig. 5. Collecting pouring task demonstrations via kinesthetic guidance on
the Franka Emika Panda robot.

The results showcase that ANDPs work reliably in this
setting and the robot successfully pours the liquid from the cup
to the bowl (Fig. 7). In order to validate more thoroughly the
effectiveness of the learned policy, we perform 10 replicates
with different initial configurations of the robot and measure
the percentage of the plastic objects that end up inside the bowl
(Fig. 6 (a)). We get a median percentage of 100% with 67.5%
and 100% for the 25-th and 75-th percentiles respectively
(Fig. 6 (b)).

VI. RESULTS AND CONCLUSIONS

ANDPs are one of the first policy structures for robot
learning that are general purpose while ensuring asymptotic
stability of the produced behaviors (at least for the controllable
part, i.e., the robot). Using ANDPs we were able to learn many
different tasks with different action space parameterizations
and different input types. Although we performed experiments
only in IL/LfD scenarios, ANDPs are fully differentiable and
generic policies and thus can also be used in pure RL settings.
We will explore this property of ANDPs in future work.



1 2 3 4 5 6 7 8 9 10
Replication

(a)

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

 in
sid

e 
th

e 
bo

wl

Distribution
(b)

Evaluation of the learned policy on a pouring task with different initial configurations

Fig. 6. Percentage of objects that ended up inside the bowl on the 10
replications of the pouring task.

Fig. 7. From left to right, screenshots of a successful trial of the pouring task
in the physical setting.

Another important feature of ANDPs is their inherit explain-
ability. Since the underlying policy is a sum of elementary
linear DSs, one can examine the ANDPs via more classical
tools for understanding the reasoning of the policy behind its
decisions. We aim at investigating this in detail in future work.

The main limitation of ANDPs’ current formulation is the
need for having a fixed attractor (even if the attractor is
“learned”, it is still a fixed attractor, that is, it does not move
throughout the episode/experience). This has two important
consequences: (a) it might be difficult for the policy to learn
long-horizon complicated tasks, and (b) we need to find a
more complicated optimization scheme in order to relax the
constraints for the elementary DSs and allow non-monotonic
motions (i.e., motions that “go away” from the attractor). In
future work, we aim at exploring the possibility of having a
moving attractor while keeping the stability properties.

Finally, although we provided interesting results with image
inputs, we aim at performing extensive experiments with
different tasks to further validate the effectiveness of ANDPs
in these settings.

ACKNOWLEDGMENTS

Konstantinos Chatzilygeroudis was supported by the Hel-
lenic Foundation for Research and Innovation (H.F.R.I.) under
the “3rd Call for H.F.R.I. Research Projects to support Post-
Doctoral Researchers” (Project Acronym: NOSALRO, Project
Number: 7541). Dimitrios Kanoulas and Valerio Modugno
were supported by the UKRI Future Leaders Fellowship
[MR/V025333/1] (RoboHike).

REFERENCES

[1] P. Varin, L. Grossman, and S. Kuindersma, “A comparison of action
spaces for learning manipulation tasks,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
6015–6021.

[2] K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B.
Mouret, “A survey on policy search algorithms for learning robot
controllers in a handful of trials,” IEEE Transactions on Robotics, 2019.

[3] R. Martı́n-Martı́n, M. A. Lee, R. Gardner, S. Savarese, J. Bohg,
and A. Garg, “Variable impedance control in end-effector space: An
action space for reinforcement learning in contact-rich tasks,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 1010–1017.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[5] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning Complex Dexterous Manipulation
with Deep Reinforcement Learning and Demonstrations,” in Proceedings
of Robotics: Science and Systems (RSS), 2018.

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming
by demonstration,” in Springer handbook of robotics. Springer, 2008,
pp. 1371–1394.

[7] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” IEEE Transactions on
Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[8] F. Stulp and O. Sigaud, “Robot skill learning: From reinforcement learn-
ing to evolution strategies,” Paladyn, Journal of Behavioral Robotics,
vol. 4, no. 1, pp. 49–61, 2013.

[9] S. Schaal, “Dynamic movement primitives-a framework for motor con-
trol in humans and humanoid robotics,” in Adaptive motion of animals
and machines. Springer, 2006, pp. 261–280.

[10] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[11] F. Khadivar, I. Lauzana, and A. Billard, “Learning dynamical systems
with bifurcations,” Robotics and Autonomous Systems, vol. 136, p.
103700, 2021.

[12] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, no. 5, pp. 800–815, 2010.

[13] A. Ude, B. Nemec, J. Morimoto et al., “Trajectory representation by
nonlinear scaling of dynamic movement primitives,” in IROS, 2016.

[14] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in NIPS, 2003.

[15] N. Figueroa and A. Billard, “A physically-consistent bayesian non-
parametric mixture model for dynamical system learning.” in CoRL,
2018, pp. 927–946.

[16] W. Amanhoud, M. Khoramshahi, and A. Billard, “A dynamical system
approach to motion and force generation in contact tasks.” Robotics:
Science and Systems (RSS), 2019.

[17] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, “Neural dynamic
policies for end-to-end sensorimotor learning,” in NeurIPS, 2020.

[18] S. Bahl, A. Gupta, and D. Pathak, “Hierarchical neural dynamic poli-
cies,” in RSS, 2021.

[19] P. Fidelman and P. Stone, “Learning ball acquisition on a physical robot,”
in 2004 International Symposium on Robotics and Automation (ISRA),
2004, p. 6.

[20] F. Stulp, G. Raiola et al., “Learning Compact Parameterized Skills with
a Single Regression,” in Humanoids, 2013.

[21] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement learn-
ing for imitating constrained reaching movements,” Advanced Robotics,
vol. 21, pp. 1521–1544, 2007.

[22] Y. Shavit, N. Figueroa, S. S. M. Salehian, and A. Billard, “Learning
augmented joint-space task-oriented dynamical systems: a linear pa-
rameter varying and synergetic control approach,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2718–2725, 2018.

[23] N. Figueroa, S. Faraji, M. Koptev, and A. Billard, “A dynamical system
approach for adaptive grasping, navigation and co-manipulation with
humanoid robots,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 7676–7682.

[24] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[25] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[26] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.


	I Introduction
	II Related Work
	III Problem formulation
	IV Proposed Policy Structure
	IV-A ANDPs via Neural Networks

	V Experiments
	V-A Multi-Task Learning
	V-B Physical Robot Experiment

	VI Results and Conclusions
	References

