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Abstract
Many robotic path planning problems are continuous, stochastic, and high-dimensional. The ability
of a mobile manipulator to coordinate its base and manipulator in order to control its whole-body
online is particularly challenging when self and environment collision avoidance is required. Re-
inforcement Learning techniques have the potential to solve such problems through their ability to
generalise over environments. We study joint penalties and joint limits of a state-of-the-art mobile
manipulator whole-body controller that uses LIDAR sensing for obstacle collision avoidance. We
propose directions to improve the reinforcement learning method. Our agent achieves significantly
higher success rates than the baseline in a goal-reaching environment and it can solve environments
that require coordinated whole-body control which the baseline fails.

1. INTRODUCTION

Mobile robots have a plethora of applications ranging from warehouse services, through oil rig
inspections, to emergency interventions [Rajana (2018); Bengel et al. (2009); Rehak et al. (2013)].
Modern robots require both high mobility and accurate manipulation to traverse collision-free paths
while performing their tasks, which can be achieved via mobile manipulators. By applying Whole-
Body Control (WBC), the base and manipulator movements of mobile robots coordinate to improve
the efficiency of the system.

Classical WBC methods include the use of kinematic, velocity, and impedance controllers,
model predictive controllers, and combinations thereof in advanced adaptive control strategies [Moro
and Sentis (2018); Logothetis et al. (2018); Kim et al. (2019)]. They have been shown to work well
in many environments while also providing stability guarantees. Reinforcement Learning (RL)
methods have shown great promise in their ability to compete with and potentially overcome clas-
sical methods in many robotic problems as they can work with complex inputs [Jaderberg et al.
(2017)] and learn complex task solutions [Levine (2018)]. Once trained, RL agents can execute
policies online, bringing down total mission times. The recent state-of-the-art works on RL for
mobile manipulator WBC have focused on goal reaching scenarios. While they show that their
solutions are quicker than traditional methods they still underperform them in terms of success
rate and impose big limitations on the robots and their environments, such as limited DoF [Kin-
dle et al. (2020)] and simplistic tasks [Wang et al. (2020)]. In this paper, we examine the trained



WBC behaviour of a state-of-the-art baseline agent trained with a shaped reward. The robot agent
is comprised of an omnidirectional base and a 7 DoF manipulator simulated in PyBullet. We de-
termine potential causes of sub-optimality in the baseline - frequent early episode termination due
to reaching joint limits and consistently folded arm. We show that clamping the joint instead of a
joint-limit penalty in the the reward improves the model’s performance significantly and allows it to
reach the goal much closer. The summarised contributions of this paper are: (i) Identifying issues
and potential improvements of a state-of-the-art method; (ii) Showing our method leads to higher
success rates than the baseline and solves an environment requiring whole-body control, which the
baseline fails; (iii) Evince our method’s ability to generalise in an unseen environment.

2. RELATED WORK AND BACKGROUND

In this section, we present traditional and reinforcement learning approaches to whole-body control.
Then, we provide the baseline reinforcement learning background setup.

Traditional Approaches: Traditional approaches to implementing WBC include the use of
kinematic and dynamic controllers [Khatib (1987); Wu et al. (2019)]. Their advantage is that the
current understanding of physical systems is refined and works well on fully actuated robots. Most
methods focus on WBC for multi-legged robots [Dietrich et al. (2012); Hoffman et al. (2018);
Rolley-Parnell et al. (2018); Laurenzi et al. (2019)]. Model Predictive Control methods are popular
with works such as Minniti et al. [Minniti et al. (2019)] showing success in WBC pose-tracking and
interaction tasks. Recent works focus on non-linear strategies, such as non-linear model predictive
control [Logothetis et al. (2018)]. While some methods such as Operational Space Control can
solve tasks with optimality and continuity in real-time, most traditional methods require large offline
computation. Moreover, the methods for mobile manipulators are often based on simplified models
of the robot which sometimes results in control solutions that are limiting the its agility.

Reinforcement Learning Approaches: Reinforcement learning approaches offer a framework
that is transferable to different tasks and robots, able to work online with scaling complexity, in a
trade off with the limited prior information that it can use and long training that is often required for
good performance. However, current methods still use application-specific architectures and rarely
generalize to multi-task scenarios [Sammut (2012)]. RL methods have successfully taught robots
dexterous vision-based manipulation tasks [Julian et al. (2020)] and navigation tasks Hester et al.
(2012); Francis et al. (2019). Most research is also focused on legged robots [Li et al. (2018); Lober
et al. (2016)]. Wang et al. [Wang et al. (2020)] integrate the state-of-the-art RL algorithms with
visual perception for WBC and propose an efficient framework for decoupling of visual perception
from control, which enables easier sim-to-real transfer However, the used environment is simple,
consisting of a table in front of a robot. Kindle et al. [Kindle et al. (2020)] use a Proximal Policy Op-
timization (PPO) based agent to train end-to-end whole-body control policies for obstacle avoidance
and tested on a real mobile manipulator achieving state-of-the-art results. Their model makes use of
Automatic Domain Randomization and Continuous Learning to guide the agent toward a solution in
a custom reach-and-grasp environment. A hand-crafted reward function is defined with components
for collision, joint limits, safety distance, optimal path following and time. These recent works show
sub-optimal performance, worse than traditional methods.



2.1. Baseline Background

We consider a standard RL framework, which includes an agent interacting with an environment
via actions and observations. Environment rewards are fed into an RL learning algorithm, which
optimises the agent’s policy and thus creates a feedback loop. The problem focuses on goal-reaching
environments in which a success is defined as the uninterrupted holding of the robot agent’s end-
effector within a given tolerance distance from the goal. The environments’ state space consists of
front and rear LIDAR scans, arm joint positions, arm joint and base velocities, and the goal location
in the end-effector frame, while action space consists of joint and base accelerations. Both LIDAR
observations and joint actions are limited to 2D planes. In this section, we discuss he state-of-the-art
baseline [Kindle et al. (2020)] used for our experiments.

Figure 1: Agent’s network architecture.

Reward: The baseline’s reward function is
handcrafted, encouraging the agent to learn to
imitate a traditional path planning method and
complete the task quicker, while discouraging
it for moving close to objects. The reward has
three termination cases: collision, timeout, and
reaching joint limits. Finally, it also introduces
an accumulation term that prevents the agent’s
exploitation of the reward.

Agent: The architecture of the agent is
based on PPO with modified layers as depicted
in Fig. 1. The two LIDAR scans are com-
pressed via a separate scan block before being
processed with the rest of the inputs in a net-
work of fully connected layers. The agent pro-
duces a discretized policy for each action.

3. METHOD

To understand the low success rate of the baseline in comparison with traditional methods, we
analysed the behaviour and performance of the agent after training. It was observed that the majority
of episodes terminate due to the robot arm reaching its joint limits. We further noticed that this is
a behaviour that can be limited explicitly instead of penalising and terminating the reinforcement
learning agent. While it was expected that the optimal solution would be for the robot to move
toward the goal with a folded arm and unfold it while it is reaching the goal position, it was observed
that the robot folds the arm in the beginning and does not change it throughout the whole run, as
shown in Fig. 2 as well as the real robot experiments [ASLteam]. The cause of this could be partially
explained by the custom environment itself, which does not explicitly require WBC in order to be
solved. Additionally, the used reward function itself places more weight on optimal path following
penalties than on timing penalties - following the optimal end-effector path is simpler when the
manipulator is folded, because the end-effector is close to the base point of rotation. We attempt to
address some of these drawbacks in this section.

Improved Environments: Two environments are used in our validations: a narrow corridor
environment for comparison with state-of-the art and a new environment that cannot be solved
without WBC. The first environment, adapted from the baseline, consists of a narrow corridor of



Figure 2: The Corridor-env (left two) requires path planning to be solved, but allows for the base
and manipulator to move independently. The local Gap-env (right two) cannot be solved
without coordination. Goal represented by red sphere.

variable length, containing random avoidable obstacles and a randomly placed goal location (See
Fig. 2). It requires the agent to plan its path and navigate around the obstacles toward the goal. We
refer to this environment as Corridor-env. However, its goal can be directly reached by folding the
arm and performing only mobile base collision-free navigation, thus does not require WBC.

We introduce a new environment (referred as Gap-env) which consists of narrow passages with
the goal end-effector pose being reachable only with coordination between the base and manipulator
(See Fig. 2). The width of the gap is very narrow and a small deviation of the arm or base during
insertion would cause a collision, thus the task is difficult to solve without coordinated control.
Two variants are used: In Gap-env-train, random uniform noise is added to initial joint angles, and
orientation and position of the goal relative to the robot spawn location; In Gap-env-test, the tunnel
gap width and length, as well as the goal placement relative to the tunnel is also randomly initialized
to ensure that the testing scenarios are unseen by the agent.

In all the environments, a success is defined as the uninterrupted holding of the robot agent’s
end-effector within a given tolerance distance from the goal. Automatic Domain Randomization
(ADR) is used to gradually adapt the complexity of the environment and guide the agent toward
a solution. This is done by increasing or decreasing the acceptable tolerance distance to the goal
depending on the agent’s recent success rate. Via ADR, the tolerance distance to the goal is dynam-
ically changed. The state space consists of 2D front and rear LIDAR scans, arm joint positions, arm
joint and base velocities, and the goal location in end-effector frame. The action space is comprised
of mobile base and arm joint accelerations. Given the complexity of the problem, its dimensionality
is reduced to planar movements of the arm.

Joint Clamping Method: When training the baseline agent in the corridor environment, it was
noticed that most of the episodes end due to joint limit termination. However, joint limits can easily
be enforced by setting a manual limit (clamping) to the joint positions based on the robot’s hardware
limits with appropriate tolerance to protect the robot. Likewise, when training the baseline in the
gap environment, it doesn’t approach the goal, rather stays near the gap and oscillates. This is
believed to be due to the baseline’s safety margin penalty, which encourages the robot to keep its
distance from all objects. We believe that a collision termination penalty is sufficient in teaching
that behaviour. Thus, our modified reward function is as follows:
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where wt is the time penalty parameter, τ is the step time, and Tt is the total time before episode
timeout. This timeout reward encourages quicker task completion. An optimal path towards the goal
is computed via Harmonic Potential Field (HPT). The goal distance reward penalises for deviation
from the HPT ∆dpd by wpd and rewards movement along the path ∆dpt normalized by the total
path dpt,init by wpt . Furthermore, wht is the reward for each time-step that the end-effector is within
tolerance distance dh of the goal point and whd is the reward for minimizing the distance to the goal
position applied only when the distance to the goal dg is smaller than the tolerance distance dh. Both
of these rewards are normalized for the holding time threshold Th after which the task is done. Ih is
the accumulated holding reward which is subtracted if the end-effector leaves the tolerance sphere
in order to prevent exploitation of the reward. Finally, Dc is a collision penalty, and Dh is the reward
for sustained holding time Th. The last two rewards end the current episode.

This reward function allows the agent to actuate the robot safely without hindering its learning
and addresses the two issues encountered when running the baseline. The joint clamping is enforced
programmatically, based on the robot’s joint limits. The agent is trained with these modifications
and compared with the standard baseline for several values of goal tolerance distance in Sec. 4.1.

Validation Setup We use a mobile manipulator robot comprised of a omnidirectional base and
a 7 DoF arm manipulator. All simulations are done using PyBullet 2.8 [Erwin Coumans (2016–
2020)], while a high performance computing cluster is used for training. Agent parameters are
shown in the appendix. Our method and the baseline are trained in Corridor-env on 32 parallel
workers for a total of 60M training steps. The final success rate, counted as number of successes
over 100 episodes, is compared in Sec. 4.1. We train the agents in Gap-env-train for 30M steps with
16 workers. The agent is then evaluated in Gap-env-test and the results are reported in Sec. 4.2. In
both environments, the ADR is gradually adapting the tolerance distance in the range [0.5;0.05].

4. RESULTS

We explore the following questions: (i) How does our method compare to the baseline? (ii) Is
the new agent able to perform well on a task requiring Whole-Body Control? (iii) Is the agent
generalizable to new environments?

4.1. Validation on Corridor Environment

Tolerance Dist (m)
0.5 0.2 0.1 0.07

Baseline 72% 65% 40% 0%
Joint-Clamping (ours) 73% 73% 63% 24%

Environment
Gap-env-train Gap-env-test

0% 0%
81% 76%

Table 1: Success rates in (left) Corridor-env against tolerance distances and in (right) Gap-env with
0.05m tolerance distance.



Figure 3: Our agent at start (left) and end (right) of reaching task.

Figure 4: (left) Adaptation of tolerance distance per step for both reward settings. (right) Total re-
turns per episode plotted against the episode termination step. Running mean smoothing
of 0.95 is used. Note that due to the use of ADR, the training rewards are fairly similar

The original baseline agent with a joint limit penalty and our modified agent with clamped
joint limits (Eq. 1) are ran with 32 workers for 60M steps. This process took 48 hours to finish.
The trained models were tested in Corridor-env with fixed goal tolerance distances in the range of
0.5 to 0.07. Running the baseline, we managed to achieve 72% for the highest tolerance distance
(0.5m), while the success rate was significantly decreasing with the tolerance distance dropping.
The minimum successful tolerance distance was 0.1m. The resulting success rates of our agent,
shown in the lower row of Table 1, are noticeably higher than the baseline performance with standard
reward, especially when the tolerance distance is decreasing.

This difference in performance can be further explained by the difference of ADR tolerances
shown in Fig. 4. For the baseline, the ADR tolerance distance reached at 60M steps is 0.1, not
reaching the lowest distance of 0.05. In comparison, our agent successfully adapted to the lowest
tolerance distance 20M steps before the training ended. This indicates that with the modified reward,
the agent learns quicker and better. The training returns of the original and modified baselines are
shown in Fig. 4. For the modified agent in the environment with tolerance distance fixed to 0.07m,
it is found that 52% of the unsuccessful episodes terminate due to collision, while 48% terminate
due to timeout. The distance from the end-effector to the goal at the end of unsuccessful episodes is
on average 0.11m. While the joint limit modification shows an increase in success rate, the folded
manipulator behaviour is still observed (see Fig. 3).



4.2. Whole-Body Control Task

Training the agent locally in Gap-env, which includes narrow tunnels where only the arm can fit,
forces the simultaneous coordination between the arm and the mobile base as a WBC. With a 0.05m
tolerance distance to the goal, the success rate of the training is 81%, shown in Table 1. As can be
observed from the success rates in the table, our agent successfully generalises to unseen variants
of the training environment, with a drop of only 5% in success rate. In a typical episode, the robot
is observed moving towards the goal, while adjusting its manipulator for tunnel-entry, as expected
from a WBC solution. In failed episodes, it is seen that the robot often reaches the goal within less
than 0.05m, however it backs off and re-approaches several times until the episode terminates due
to timeout. Note that the original baseline method was not able to solve such environments.

5. CONCLUSIONS AND FUTURE WORK

This work presents an RL method for Whole-body Control of a mobile manipulator that improves
on the state of the art. Our shaped reward function combined with joint limit clamping shows a
significant improvement of 24% over the baseline for small tolerance distances. Moreover, the
proposed agent can solve WBC tasks which the baseline fails. We show that training with our reward
in one environment, transfers its learned skills well to a similar, but different, testing environment.
The current method is limited to using 2D LIDAR data and planar manipulator actions. Future work
will focus on expanding these limitations via more informative observations, such as 3D LIDAR or
RGB-D images. More importantly, the “folding arm” behaviour should be further examined.

Acknowledgment: We thank Julien Kindle for his support in running the baseline agent code.
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