
Sparse Surface Modeling with Curved Patches

Dimitrios Kanoulas and Marsette Vona

Abstract— Traditional segmentation algorithms for range
images create partitions of connected and non-overlapping—
but potentially irregularly shaped—regions corresponding to
world surfaces. This paper presents an alternative paradigm
based on regularly shaped curved patches (paraboloids) that
model local contact regions potentially compatible with e.g.
a robot’s toe, heel, or fingertip. These patches randomly
sample the environment surface but are not required to strictly
partition it. They are fit to neighborhoods of the range data
and then validated for fit quality and fidelity to the actual
data—extrapolations (like hole-filling) which are not directly
supported by data are avoided. Two different neighborhood
formation methods based on k-d tree and triangle mesh data
structures are compared, and results are presented for 10
datasets taken in natural rocky terrain.

I. INTRODUCTION

Some of the most challenging open problems in robotics
are those which will require reliable contact with unstruc-
tured world surfaces, for example, walking on natural rocky
terrain or climbing in a pile of rubble [1]. Recent ad-
vancements often either assume significant structure in the
environment (like humanoid walking on flat ground [2]) or
that irregularities can be tolerated by low-level feedback
control during contact (as in BigDog [3]). 3D perception is
sometimes used for obstacle detection or coarse traversability
prediction (as in the Mars Exploration Rovers (MER) [4]).
However, to enable rough-terrain walking and climbing,
a perception system that can spatially model and finely
quantify potential 3D contact surfaces may be needed.

Paraboloid surface patches with regular boundaries and
one or two curvatures can be the basis for such a system: they
can be applied to unstructured scenes, they are potentially
easier to reason about than polygon mesh, continuous height-
field models (e.g. [5]), or multiply-curved NURBS1 patches
(e.g. [6]), and they can model rough environments more
compactly than planar patches (e.g. [7]).

Instead of building patches with widely varying boundary
size, we propose to use one or several patch sizes driven by
the task and robot structure. For example, in rough terrain
walking the patch size(s) could be approximately the same as
robot’s foot pads. Patches may overlap to provide a sampling
of possible contacts in smooth regions, and they may also
only partially cover the environment.

Figure 5 shows the set of bounded paraboloid patches
from our prior work [8]. We use the models and the fitting
algorithm from that work, but now fit many patches randomly

The authors are with the College of Computer and Infor-
mation Science, Northeastern University, Boston, Massachusetts
dkanou@ccs.neu.edu, vona@ccs.neu.edu

1Non-Uniform Rational B-Spline.

over an environment surface that has been sampled by a
range sensor. We are also working on detecting salient
features such as peaks, valleys, and flats, and to integrate
task-specific strategies to only sample relevant parts of the
environment. These will be important refinements, but they
will not obviate the need to (a) find good neighborhoods in
the range data and (b) validate the fitted patches, which are
the main topics of this paper.

Our algorithm (Figure 1) is divided into four main steps for
each patch; patches may be fit either iteratively or in parallel.
The first step is the selection of a seed point. Next is the
neighborhood search around that point. We compare two dif-
ferent approaches for finding local neighborhoods, one using
a triangle mesh structure and the other using k-dimensional
(k-d) trees, which have different properties near surface
discontinuities. The third step is to fit the pose, curvatures,
and boundary of a paraboloid patch to the neighborhood.
Finally the patch is evaluated using two different metrics,
and possibly discarded. We use both a Euclidean residual
to quantify fit quality and a grid-based coverage algorithm
to ensure that the patch is sufficiently representative of the
actual data. The system has been implemented in the Surface
Patch Library (SPL), with code available on our website [9].

Next we cover related work and review the key data
structures. We then give the details of the algorithm including
neighborhood searching, a new refinement to the fitting
algorithm to avoid side-wall fits (Fig. 6), and the residual
and coverage evaluation algorithms. Finally we present ex-
perimental results for 10 datasets acquired outdoors in natural
rocky terrain plus one artificial dataset.

Regarding the choice of k-d tree vs triangle mesh for
neighborhood searching, we find that k-d tree has a slight
advantage in producing consistently sized patches (patch size
is fit to neighborhood extent, which each algorithm attempts
to regularize in a different way), but also is more likely to
result in patches with larger Euclidean residual.

A. Related Work

The approach explored here contrasts with the traditional
study of range image segmentation [10]–[12] where a dense
partition of connected and non-overlapping but potentially
irregularly bounded—and usually planar [13]–[15]—regions
is generated. Irregularly bounded regions, which may be very
large or non-convex, can present a challenge for higher-level
contact planning algorithms which still need to search for
specific contact areas within each region. One aim of using
regularly bounded regions of approximately the same size
as relevant contact features on the robot is to trade such



Patch Fitting Neighborhoods

3D point cloud acquisition
Seed Selection

Patch Evaluation Meshk-d tree

Pre-processing

Fig. 1. System overview showing the main steps in the algorithm and the choice of k-d tree or triangle mesh data structures.

potentially complex continuous searches within patches to a
discrete search across patches.

Modeling the environment and detecting potential contact
surface areas for locomotion using exteroceptive sensing is a
common task, but still very challenging. Grid-based systems
like those on Ambler [16], Dante II [17], and MER [4] use
laser scanners or stereo cameras to build an elevation map,
find obstacles, and quantify traversability, but usually don’t
model detailed 3D contact features.

Visual odometry and stereo cameras or range sensors have
also been used on several current walking robots including
BigDog [18], [19] and DLR Crawler [20], though again
mainly for obstacle avoidance and traversability analysis,
not detailed 3D foot placement or contact planning. Some
steps have been made in that direction in [21], where terrain
is modeled using a Gaussian Process, and in [5] where a
continuous surface model is used for Little Dog locomotion.
Also, several works use stereo vision or laser scanners to
map planar environment segments for humanoids operating
indoors in controlled conditions [15], [22].

In [23] texture synthesis was presented to deal with the
problem of occluded terrain by filling in the missing portions.
Our approach avoids representing such missing areas where
uncertainty is high. We instead plan to integrate multiple
range scans taken from different perspectives as the robot
moves to fill in missing areas with new observations using
a volumetric fusion approach [24], [25].

II. DATA STRUCTURES

Range sensors are now commonly available. Stereo and
structured light sensors like the Kinect, time-of-flight cam-
eras, and laser scanners produce clouds of 3D sample points
of environment surfaces. Here we focus on point cloud data
in the form of an image acquired from a single point of
view, with N 3D sample points organized in an Nr × Nc

grid, NrNc = N . Due to occlusions, limited sensor range,
and other factors, there may be grid cells map where depth
information is invalid. (Grid-organized data can also be
synthesized from other representations, including from the
volumetric fusion mentioned above, by raycasting.)

Our algorithm requires finding local neighborhoods of 3D
points, for which spatial decompositions like k-dimensional
(k-d) trees [26] are commonly used. Another common struc-
ture for representing 3D sample points of surfaces is the
triangle mesh. We next present details of these two structures.

Fig. 2. Left: Terrain mesh in a 10-by-10 grid. The black pixels are those
that either have invalid depth or either belong to a Canny edge (see text).
Right: the chain distance (green) can distinguish points separated by a jump,
whereas Euclidean 3D distance (red) may not.

A. Triangle Mesh

The triangle mesh structure can be constructed quickly
since the input data is in the form of a grid. The basic algo-
rithm is to locally connect (x, y) grid neighbors with triangle
edges using only the presence or absence of valid depth data,
but not the actual z values. We connect neighboring valid
points in the same row and column and close triangles by
adding diagonals (Fig. 2, left).

A well known problem (Fig. 3) is that depth discontinu-
ities, i.e. jumps, between (x, y) neighbors will be bridged.
To address this we use Canny edge detection on the z val-
ues [27]. The resulting edge points are used to limit triangle
construction, creating gaps in the mesh at jumps. However,
Canny edge detection does not guarantee continuous edges.
To help with this, we also remove both the triangles with
sides longer than a threshold Tes = 5cm and those whose
ratio of the longest side to shortest side (aspect ratio) is more
than a threshold Tar = 5.

Fig. 3. Example of depth jumps between neighboring pixels.

Mesh building, Canny edge detection, and removal of
long triangles are all O(N). The cost for finding k nearest
neighbors (with breadth first search) is O(k).



B. K-D Tree

One of the most common data structures for spatial points
is the k-d tree [26]. Whereas the triangle mesh approach
depends on the grid organization of the data, k-d trees can
be constructed from any point cloud. However, k-d trees do
not directly encode information about depth discontinuities.

The cost for building a k-d tree is O(N log2N) when us-
ing an O(N logN) sorting algorithm for computing medians,
or O(N logN) with a linear median-finding algorithm [26].
The cost for finding k nearest neighbors is O(k logN).

III. SPARSE SURFACE MODELING

Using one of the above data structures for neighborhood
finding, patches are fit either iteratively or in parallel to the
environment surface samples using the following algorithm:

1) Pick a seed point on the surface (Sec. III-A).
2) Find its neighbors within distance r (Sec. III-B).
3) Fit a bounded patch to the neighborhood (Sec. III-C).
4) Evaluate the patch with residual and coverage metrics

and discard it unless both checks pass (Sec. III-D).
5) Continue until termination (Sec. III-E).

The neighborhood size r is set to a fixed value (e.g. 5–
10cm) derived from the size of the intended contact surface
on the robot2. Pre-processing, like background removal and
decimation, can be applied first depending on the application.
Several termination checks may be applied, for example,
checking if the sum of the patch areas has reached a given
ratio of the total surface area.

Next we describe each step of the algorithm in detail.

A. Seed Selection

Here we use random seed selection as a baseline method
and general task-independent approach. Figure 1 illustrates
50 randomly seeded patches. We are also considering some
types of (possibly task-specific) salient points [28], including
peaks and valleys, and the possibility to direct more samples
in task-specific areas of interest.

B. Patch Neighborhoods

Finding nearest neighbors in a point cloud is a well-studied
problem. Many methods have been introduced, including
approximations. Two concepts of a neighborhood are: (a) k
nearest neighbors, i.e. the k closest points to a seed; (b) all
neighbors within distance r from the seed, for some distance
metric. For fitting uniformly bounded patches we use the
latter; the number of points k in the recovered neighborhood
thus varies depending on r and the specifics of the distance
metric and the search algorithm (Fig. 4).

2Of course the robot may also make contact in other ways. The patch
model could help plan intentional contacts while other data structures are
simultaneously used for general collision prediction.

k-d tree
neighborhoods

terrain mesh
neighborhoods

Fig. 4. Ten neighborhoods with r = 0.05m. Unlike k-d tree neighborhoods,
triangle mesh neighborhoods do not span surface discontinuities.

Using the Triangle Mesh: First define chain distance as
the weighted edge path length between vertices in the mesh,
with the weight between two vertices that share an edge equal
to their Euclidean distance in 3D. To find neighbors within
distance r from a seed point we apply a breadth-first search
from the seed, pruning it when the chain distance exceeds
r. In that way we reduce the chances that the extracted
neighbors cross discontinuities in the point cloud, even if
they are spatially close (Fig. 2, right).

Using the K-D Tree: We search for neighbors within
Euclidean distance r of the seed using the classic method
introduced in [26]. The extracted neighborhood may span
surface discontinuities (Fig. 4).

C. Patch Modeling and Fitting
We fit a bounded patch to the neighborhood using the

paraboloid patches from [8]. We briefly review the model
and fitting algorithm and we describe the side-wall effect
that the original algorithm didn’t consider.

Fig. 5. Paraboloid patches (including planes) with regular boundaries.

Patch Modeling: Here we consider paraboloid patches
paired with elliptic, circular, rectangle, or convex quadrilat-
eral boundaries (Fig. 5). Paraboloids are complete in that
they form an approximation system for local regions on
any smooth surface. They are parametrized using intrinsic
parameters for patch’s shape, i.e. principal curvatures and
boundary curve parameters, and extrinsic parameters for
spatial pose, i.e. rotation and translation vectors (r, t) ∈
R3×R3. The implicit form for a paraboloid with curvatures
(κx, κy) in the local frame3 L defined by (r, t) is

pl
TKpl − 2pl

T ẑ = 0 (1)

K , diag(κx, κy, 0), ẑ , [0 0 1]T

where pl ∈ R3 is a point on the patch in frame L.

3L is also the Darboux frame of the paraboloid.



Patch Fitting: A nonlinear fitting algorithm is used based
on a variation of Levenberg-Marquardt iteration that fits
bounded curved patches to N sample points qi ∈ R3. The
algorithm minimizes a sum-of-squares residual by optimizing
the patch implicit and explicit parameters. The residual for
an individual sample point qi scales the value of the implicit
form (1) by the inverse of a first-order estimate of its standard
deviation, which is derived in turn from a covariance matrix
modeling the sensor uncertainty for qi.

Type selection for the boundary curve is only partially
automatic—rectangles and convex quads are only used if
requested. We cover them here for completeness; only circle
and ellipse boundaries are used in the experiments.

Fig. 6. The reparameterization in Eq. (2) keeps the fitted paraboloid
centered on the data (right). This prevents the “side-wall” effect (left) and
helps ensure good coverage, but can compromise the Euclidean residual.

Side-wall effect problem: When the neighborhood points
don’t have a central symmetry then they may be unevenly
distributed in the patch when using the original fitting
algorithm in [8]. We call this the side-wall effect (Fig. 6). To
handle this we apply a constrained fitting where the center
of the patch c ∈ R3 must lie on the line through the centroid
cp of the neighborhood parallel to the normal np to an initial
fit plane. This is implemented as a reparameterization

c = cp + anp (2)

where a ∈ R is the new patch parameter replacing c.

D. Patch Evaluation

The last part of the algorithm is the evaluation of the patch
and the decision whether to keep it. We use two measures
based on the residual and coverage. The first one evaluates
the surface and the second one the boundary of the patch.

Residual Evaluation: The patch residual measures the
deviation between the sample points and the (unbounded)
paraboloid patch surface. We use the root-mean-square error
(RMSE) Euclidean residual % between the sample points qi

and their corresponding closest points pi on the patch:

% =

√∑N
i=1 ‖qi − pi‖2

N
. (3)

(Here we consider both qi and pi to be expressed in the
patch local frame L.)

Whereas the patch fitting algorithm uses an algebraic
residual for speed, % is a Euclidean residual and gives its
result in the same physical units as the input data (e.g.
meters) [29], enabling it to be compared to a meaningful
threshold. However, the required pi must be calculated for
each qi.

in
d

iv
id

u
a
l 
p

a
tc

h
 r

e
si

d
u

a
l

patches sorted by
increasing residual

0.005

Fig. 7. Left: Coverage evaluation for a bad (top) and a good (bottom) patch
with bad cells in red. Right: Sorted residuals for 1000 random patches (see
text), approximately 95% of which are below 0.01.

When κx ≈ κy ≈ 0 the paraboloid surface was fitted as
a plane, so pi = (I − ẑẑT )qi, i.e. pi is the projection of qi

onto the xy plane of L. Otherwise pi is characterized as:

min
pi satisfying (1)

‖qi − pi‖. (4)

A solution can be found using Lagrange multipliers [30].
Define the Lagrange function Λ as

Λ(pi, λ) = (qi−pi)
T (qi−pi) + λ(pT

i Kpi− 2pT
i ẑ). (5)

with Lagrange gradient constraints

∇Λ(pi, λ) = 0T ⇔ ∂Λ/pi = [0 0 0] and ∂Λ/λ = 0. (6)

Expand the first gradient constraint from (6)

−2qT
i +2pT

i +λ(2pT
i K−2ẑT ) = [0 0 0]

−qi+pi+λ(Kpi−2ẑ) = [0 0 0]T

(I + λK)pi = qi + λẑ

pi = (I+λK)−1(qi+λẑ) (7)

and substitute for pi in the second gradient constraint, which
is the same as (1). This leads to a fifth degree polynomial
in λ, for which there is at least one real solution because
imaginary solutions come in pairs. Finally, backsubstitute4

the real solution(s) in (7) and find the minimum as in (4).
To determine the residual threshold Tr such that any patch

with % > Tr will be dropped, we sorted all residuals (Fig. 7,
right) for a sampling of 1000 random patches (r = 0.1m, k-
d tree neighborhoods), 100 on each of our 10 rock datasets.
The value Tr = 0.01m was selected to include approximately
95% of the patches. In general Tr can be set in an application
dependent way. Furthermore, the choice of RMSE residual
is not essential. For example, an alternate residual

%alt = max ‖qi − pi‖ (8)

could be used to check if any small surface bumps protrude
more than a desired amount from the surface.

4Division by zero can occur during this backsubstitution when qi is on
a symmetry plane or axis, but alternate forms can be used in those cases.



Fig. 8. Left: the six possible placements of a cell for the top right quadrant
of an elliptic boundary. Middle: similar for the axis-aligned rectangular
boundary. Right: example of an intersection between a general convex
quadrilateral boundary and a grid cell.

Coverage Evaluation: A different evaluation is needed
to take into account the patch boundary. A patch may fit
the data but still not faithfully represent the neighborhood,
either because too many sample points are outside the patch
boundary or there is too much area inside the boundary that
is not supported by data points. (We opt not to speculatively
fill holes in the data.)

To detect these cases we generate an axis-aligned grid of
fixed pitch wc on the xy plane the patch local frame L. We
generate only the required number of rows and columns in
this grid to fit the projection of the patch boundary.

Define Ic and Oc to be the number of data points whose
xy projections are both inside a given cell and respectively
inside or outside the projected patch boundary. Define Ai to
be the area of the geometric intersection of the cell and the
projected patch boundary, which will be detailed below. The
cell is considered bad iff

Ic <
Ai

w2
c

Ti or Oc > (1− Ai

w2
c

)To. (9)

for thresholds Ti and To. Here we fix these thresholds relative
to the expected number of samples Ne in a given cell if all
samples were in-bounds and evenly distributed:

Ti = ζiNe, To = ζoNe, Ne , k/Np, Np ,
Ap

w2
c

, (10)

where k is the number of sample points in the neighborhood
and Ap is the area of the patch approximated as the area
inside the projected boundary.

The patch fails coverage evaluation iff there are more than
Tp bad cells. After some experiments in fitting paraboloid
patches with r = 0.1m, we set wc = 0.01m, ζi = 0.8,
ζo = 0.2, and Tp = 0.3Np. Figure 7 (left) illustrates patches
that pass and fail coverage evaluation.

Intersection Area for Ellipse and Circle Boundaries: For
an ellipse boundary with radii a, b, or for the degenerate case
of a circle boundary with radius r = a = b, we compute
the intersection area with a secant approximation since the
exact computation involves a relatively expensive inverse
trig function. Wlog we describe only the top right quadrant
(Fig. 8, left); the other three are symmetric. Let p0...3 be
the four corners of a grid cell in counter-clockwise order
starting from the lower left. The algorithm for computing
the intersection area is:

1) If p2 is inside the ellipse then Ai = w2
c

2) else if p0 is not inside the ellipse then Ai = 0
3) else if p1 is inside the ellipse then

if p3 is inside the ellipse then Ai = A1 else Ai = A2

4) else if p3 is inside the ellipse then Ai = A3

5) else Ai = A4.

A1 = (xb − x0)wc + (xc − xb)(Y (xb)− y0)+

((xc − xb)(y0 + wc − Y (xb)))/2
(11)

A2 = (xc − x0)(Y (xc)− y0)+

(xc − x0)(Y (x0)− Y (xc))/2
(12)

A3 = (yc − y0)(X(yc)− x0)+

(yc − y0)(X(y0)−X(yc))/2
(13)

A4 = (X(y0)− x0)(Y (x0)− y0)/2 (14)

X(y) , a
√

1− y2/b2, Y (x) , b
√

1− x2/a2

xb , X(y0 + wc), xc , x0 + wc, yc , y0 + wc

[x0, y0]T , p0

Intersection Area for Axis-Aligned Rectangle Boundary:
As above we consider only the top right quadrant (Fig 8,
middle). Let the rectangle half-lengths be a, b, and define
[x0, y0]T , p0. The exact intersection area can be computed
as follows:

1) If p2 is inside the rect then Ai = w2
c

2) else if p0 is not inside the rect then Ai = 0
3) else if p1 is inside the rect then Ai = A5 = wc(b−y0)
4) else if p3 is inside the rect then Ai = A6 = wc(a−x0)
5) else Ai = A7 = (a− x0)(b− y0).
Intersection Area for Convex Quadrilateral Boundary:

To handle the case of a general convex quadrilateral (Fig. 8,
right), we use the fact that the intersection between a convex
quad and a rectangle is always convex:

1) Find the set of grid cell corner points that are inside
the quad and vice-versa.

2) Find the intersection points between the grid cell
boundaries and the convex quad boundaries.

3) Discard all points from steps 1 and 2 except those that
lie in or on both figures.

4) Sort all the points computed in the previous steps in
counterclockwise order and connect the first point with
each of the others in order, forming a triangle fan. Ai

is the sum of the triangle areas.

E. Termination Criteria

Various termination criteria can be used, for example:
wall-clock time, total number of patches, or task-specific
criteria. Another approach is to specify a desired fraction ν of
the total sampled surface area S that should probabilistically
be covered by patches. Note that ν can be both less than
1, to sample sparsely, or more than 1, to oversample. With
r-ball neighborhood search (using either k-d tree or triangle
mesh) and ellipse-bounded paraboloid patch fitting we can
estimate the expected number of patches for this criteria as

ν
S

πr2
. (15)

Or, as we do in the experiments below, we can fit patches
until the sum of their areas reaches or exceeds νS.



Data Structure
Patches Dropped

patches Average
residual
(mm)

Total
area
(m2)total valid due to

residual
due to

coverage total

rock 1 k-d tree 167 142 15 10 25 4.6 4.57
tri mesh 164 144 6 14 20 4.3 4.57

rock 2 k-d tree 160 107 18 36 53 5.0 3.13
tri mesh 185 124 0 61 61 4.0 3.13

rock 3 k-d tree 231 183 24 24 48 5.2 5.53
tri mesh 227 199 1 27 28 4.7 5.53

rock 4 k-d tree 220 164 27 31 56 5.0 5.01
tri mesh 215 181 8 29 34 4.8 5.01

rock 5 k-d tree 195 157 17 24 38 5.4 4.86
tri mesh 188 163 5 20 25 5.1 4.86

rock 6 k-d tree 235 185 31 20 50 5.7 5.69
tri mesh 273 226 9 39 47 5.3 5.69

rock 7 k-d tree 267 213 30 25 54 4.4 6.54
tri mesh 266 219 17 30 47 4.2 6.54

rock 8 k-d tree 260 223 16 22 37 4.2 7.04
tri mesh 256 231 2 23 25 3.9 7.04

rock 9 k-d tree 187 159 13 16 28 4.8 4.95
tri mesh 189 162 9 19 27 4.6 4.95

rock 10 k-d tree 301 223 30 50 78 5.0 6.98
tri mesh 300 236 9 55 64 4.7 6.98

rock
average

k-d tree 222 176 22 26 47 4.9 5.43
tri mesh 226 189 7 32 38 4.6 5.43

fake k-d tree 65 18 18 44 47 3.8 0.50
tri mesh 75 21 1 54 54 3.8 0.50

TABLE I

In practice it is nontrivial both to calculate the total
sampled surface area S and the area of any individual patch.
To approximate S we compute the triangle mesh (Sec. II-A)
and sum the triangle areas. We approximate the area of an
individual patch as the area of the projection of its boundary
on the xy plane of the patch local frame L.

IV. EXPERIMENTAL RESULTS

We performed experiments to test the overall approach and
to compare the triangle mesh and k-d tree data structures for
neighborhood finding. 11 datasets were collected with the
Kinect at 640×480 resolution and then decimated by 2. The
first 10 are scenes of natural rocky terrain (Fig. 11) acquired
with a hand-held Kinect outdoors on an overcast day (the
Kinect does not work in direct sunlight). The last is taken in
the lab with synthetic rocks (Fig. 1).

The parameters were: neighborhood radius r = 0.1m,
residual threshold Tr = 0.01m, coverage cell size wc =
0.01m, coverage threshold factors ζi = 0.8, ζo = 0.2,
and Tp = 0.3Ap/w

2
c (all motivated above). We let the

algorithm run for each dataset until the sum of the patch
areas equaled or exceeded 90% of the sampled surface area,
both approximated as described in Sec. III-E. Our current
Matlab implementation is not optimized and takes about
70ms per patch. We aim to improve this for real-time use
by optimization and parallelization.

Qualitatively, as depicted in Figure 9 and 10, the algo-
rithm appears to give a reasonable representation of non-
smooth environment surfaces. Quantitatively, we measured
the following statistics (Table I): the total number of patches
before evaluation, the number of valid patches passing both
residual and coverage evaluation, the number of dropped
patches for each test, the average Euclidean residual (of the

k-d tree
neighborhoods

terrain mesh
neighborhoods

Fig. 9. A subset of patches fit to the fake rock dataset corresponding to the
neighborhoods in Figure 4. The black patches failed coverage evaluation.

Fig. 10. Left: Histogram of patch sizes for k-d tree (red) and triangle mesh
(black) neighborhoods. Right: 70 patches on the dataset rock 3.

valid patches), and the total surface area for each dataset.
There are generally more patches dropped due to residual

for k-d tree neighborhoods, possibly because the triangle
mesh neighborhoods avoid discontinuities which may not
be fit well by a paraboloid. We see the opposite effect for
patches dropped due to coverage: more patches are generally
dropped due to insufficient coverage when using triangle
mesh neighborhoods. The k-d tree neighborhoods may dis-
tribute samples more evenly, particularly near discontinuities.

Another interesting result is that more patches are required
to reach 90% of the surface area when using triangle mesh
neighborhoods. In Figure 10 we see that the distribution of
patch areas created using mesh neighborhoods is skewed
more to the low side than those created using k-d tree
neighborhoods. This can again be explained by the fact that
k-d tree neighborhoods will span discontinuities but remain
roughly circular, whereas triangle mesh neighborhoods may
be less circular when the seed point is near an edge.

V. CONCLUSIONS AND FUTURE WORKS

Paraboloid patches with one or two curvatures and reg-
ularly shaped bounds, sized to match contact surfaces on
a robot, are an alternative to traditional segmentations for
representing 3D contact surfaces in unstructured environ-
ments. The set of bounded patch models and the fit-and-
validate strategy described here could be the basis for such a
system. We investigated several aspects of the system design,
in particular, the choice of data structures for neighborhood
searching and the type of validation tests to use.

With respect to the relative merits of k-d tree vs triangle
mesh data structures, our experiments indicate that both
approaches are competitive. K-D trees do not directly encode
discontinuity information, resulting in more patches dropped



Fig. 11. Datasets rock 1–5. All rock datasets were acquired with a hand-held Kinect outdoors on an overcast day.

due to large residual, but also produce more consistently
sized neighborhoods than triangle mesh. Though we use grid-
organized samples here, general point clouds can be easier to
handle with k-d trees than with triangle mesh. Preliminary
timing results also suggest that the larger theoretical time
complexity for k-d trees is not a significant factor in practice.

We are now optimizing the implementation and exploring
adding salient features as additional seed points to ensure that
task-relevant areas are sufficiently sampled by patches. We
are also planning to integrate sparse patch-based modeling
with dense volumetric fusion of range data from a mov-
ing camera [25], with the goal of maintaining a dynamic
“patch map” of relevant contact surfaces around a robot. In
particular, we are intending to use these methods in a new
perceptual system for bipedal locomotion on rough terrain
(see [8], Figure 4) where individual foot contact surfaces
must first be located visually before stepping.

REFERENCES

[1] S. Jajita and T. Sugihara, “Humanoid Robots in the Future,” Advanced
Robotics, vol. 23, pp. 1527–1531, 2009.

[2] “Honda - ASIMO,” http://asimo.honda.com/.
[3] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and the Big-

Dog Team, “Bigdog, the Rough-Terrain Quadruped Robot,” World
Congress of The Int. Fed. of Automatic Control, 2008.

[4] M. W. Maimone, P. C. Leger, and J. J. Biesiadecki, “Overview
of the Mars Exploration Rovers’ Autonomous Mobility and Vision
Capabilities,” in IEEE Int. Conf. on Robotics and Automation, 2007.

[5] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and
W. Burgard, “A Bayesian Regression Approach to Terrain Mapping
and an Application to Legged Robot Locomotion,” Journal of Field
Robotics, vol. 26, no. 10, pp. 789–811, Oct. 2009.

[6] A. Richtsfeld, T. Mörwald, J. Prankl, J. Balzer, M. Zillich, and
M. Vincze, “Towards Scene Understanding—Object Segmentation
Using RGBD-Images,” in Computer Vision Winter Workshop, 2012.

[7] N. Vaskevicius, A. Birk, K. Pathak, and S. Schwertfeger, “Efficient
Representation in 3D Environment Modeling for Planetary Robotic
Exploration,” Advanced Robotics, vol. 24, no. 8-9, 2010.

[8] M. Vona and D. Kanoulas, “Curved surface contact patches with
quantified uncertainty,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2011.

[9] D. Kanoulas and M. Vona, “Surface Patch Library (SPL),” 2012, http:
//www.ccs.neu.edu/research/gpc/spl.

[10] X. Jiang and H. Bunke, “Fast Segmentation of Range Images into Pla-
nar Regions by Scan Line Grouping,” Machine Vision and Application,
vol. 7, no. 2, pp. 115–122, 1994.

[11] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke,
D. Goldgof, K. Bowyer, D. Eggert, A. Fitzgibbon, and R. Fisher, “An
Experimental Comparison of Range Image Segmentation Algorithms,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18,
no. 7, pp. 673–689, 1996.

[12] M. Powell, K. Bowyer, X. Jiang, and H. Bunke, “Comparing Curved-
Surface Range Image Segmenters,” in Int. Conf. Comp. Vision, 1998.

[13] K. Pathak, N. Vaskevicius, and A. Birk, “Revisiting Uncertainty
Analysis for Optimum Planes Extracted from 3D Range Sensor Point-
Clouds,” in IEEE Int. Conf. on Robotics and Automation, 2009.

[14] J. Weingarten and R. Siegwart, “3D SLAM Using Planar Segments,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.

[15] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3D Perception and
Environment Map Generation for Humanoid Robot Navigation,” The
Int. J. of Robotics Research, vol. 27, no. 10, pp. 1117–1134, 2008.

[16] E. Krotkov and R. G. Simmons, “Perception, Planning, and Control
for Autmonomous Walking With the Ambler Planetary Rover,” Int. J.
of Robotics Research, vol. 15, no. 2, pp. 155–180, 1996.

[17] J. Bares and D. Wettergreen, “Dante II: Technical Description, Results,
and Lessons Learned,” Int. J. of Robotics Research, vol. 18, no. 7, pp.
621–649, 1999.

[18] A. Howard, “Real-time Stereo Visual Odometry for Autonomous
Ground Vehicles,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2008.

[19] D. Wooden, M. Malchano, K. Blankespoor, A. Howard, A. A. Rizzi,
and M. Raibert, “Autonomous Navigation for BigDog,” in IEEE Int.
Conf. on Robotics and Automation, 2010.

[20] A. Stelzer, H. Hirschmüller, and M. Görner, “Stereo-Vision-Based
Navigation of a Six-Legged Walking Robot in Unknown Rough
Terrain,” Int. J. Robotics Research, vol. 31, no. 4, pp. 381–402, 2012.

[21] T. Lang, C. Plagemann, and W. Burgard, “Adaptive Non-Stationary
Kernel Regression for Terrain Modelling,” in Robotics: Science and
Systems, 2007.

[22] K. Nishiwaki, J. Chestnutt, and S. Kagami, “Autonomous Navigation
of a Humanoid Robot over Unknown Rough Terrain using a Laser
Range Sensor,” Int. J. of Robotics Research, vol. 31, no. 11, pp. 1251–
1262, 2012.

[23] J. Z. Kolter, Y. Kim, and A. Y. Ng, “Stereo Vision and Terrain
Modeling for Quadruped Robots,” in IEEE Int. Conf. on Robotics and
Automation, 2009.

[24] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-Time Dense Surface Mapping and Tracking,” in
IEEE Int. Sym. on Mixed and Augmented Reality, 2011.

[25] H. Roth and M. Vona, “Moving volume KinectFusion,” in British
Machine Vision Conference, 2012.

[26] J. L. Bentley, “Multidimensional Binary Search Trees Used for Asso-
ciative Searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[27] E. Wolfart, V. Sequeira, K. Ng, S. Butterfield, J. Gonçalves, and
D. Hogg, “Hybrid Approach to the Construction of Triangulated 3D
Models of Building Interiors,” in Computer Vision Systems. Springer,
1999, pp. 489–508.

[28] Y.-S. Liu, M. Liu, D. Kihara, and K. Ramani, “Salient Critical Points
for Meshes,” in ACM Symp. on Solid and Physical Modeling, 2007.

[29] J. Ponce, D. J. Kriegman, S. Petitjean, S. Sullivan, G. Taubin, and
B. Vijayakumar, “Representations and Algorithms for 3D Curved Ob-
ject Recognition,” in Three-Dimensional Object Recognition Systems,
P. Flynn and A. Jain, Eds. Elsevier Press, 1993, pp. 327–352.

[30] D. Eberly, “Distance from Point to a General Quadratic Curve or a
General Quadric Surface,” Tech. Rep., 1999.


