
Safe Trajectory Sampling in Model-based Reinforcement Learning

Sicelukwanda Zwane1, Denis Hadjivelichkov1, Yicheng Luo1,
Yasemin Bekiroglu1,2, Dimitrios Kanoulas1, and Marc Peter Deisenroth1

Abstract— Model-based reinforcement learning aims to learn
a policy to solve a target task by leveraging a learned dynamics
model. This approach, paired with principled handling of
uncertainty allows for data-efficient policy learning in robotics.
However, the physical environment has feasibility and safety
constraints that need to be incorporated into the policy before
it is safe to execute on a real robot. In this work, we study
how to enforce the aforementioned constraints in the context
of model-based reinforcement learning with probabilistic dy-
namics models. In particular, we investigate how trajectories
sampled from the learned dynamics model can be used on a
real robot, while fulfilling user-specified safety requirements.
We present a model-based reinforcement learning approach
using Gaussian processes where safety constraints are taken
into account without simplifying Gaussian assumptions on
the predictive state distributions. We evaluate the proposed
approach on different continuous control tasks with varying
complexity and demonstrate how our safe trajectory-sampling
approach can be directly used on a real robot without violating
safety constraints.

I. INTRODUCTION

Motion planning in robotics has been studied extensively,
and a variety of approaches have been proposed based
on, e.g. sampling [1], optimization [2], and probabilistic
inference [3]. In this setting, nonparametric learning based
methods such as Gaussian processes (GPs), have been shown
to generate smooth trajectories without compromising ac-
curacy [4] while providing a principled way of modeling
uncertainties associated with operating on physical robot sys-
tems. When the system dynamics model is unknown/partially
known, the motion planning problem can be addressed using
a reinforcement learning (RL) approach. RL based methods
have been utilized for robot control and motion planning
[5] coping with nonlinearities and presenting flexibility in
modeling a variety of task oriented skills. However, applying
RL algorithms to robotic arm trajectory generation while
avoiding obstacles and abiding by constraints is a data-
intensive process. Improving training efficiency and safety
of RL algorithms on physical systems is an active research
area.

Model-based RL (MBRL) is a particularly promising
approach for robotics because it addresses limitations that

1All authors are with the UCL Centre for Artificial
Intelligence, University College London, UK. 2Y. Bekiroglu is
also with the Department of Electrical Engineering, Chalmers
University of Technology, Sweden. Corresponding author email:
sicelukwanda.zwane.20@ucl.ac.uk.

This work was partially supported by the the Engineering and Physical
Sciences Research Council (EPSRC) [EP/S021566/1] and the UKRI Future
Leaders Fellowship [MR/V025333/1] (RoboHike). For the purpose of Open
Access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission.

Fig. 1: A learned safe policy execution on a Panda robot
without violating constraints, i.e., the low-hanging ceiling
shown in black. The example trajectory is represented by the
red line with configurations at time steps t = {0, 10, 20, 30}.
The target pose is reached at t = 30.

arise with data collection [6]. Unlike model-free RL algo-
rithms [7], MBRL can alleviate this problem and provide
better data-efficiency, as it exploits a model of the system’s
dynamics to generate trajectories for training the policy [8].
However, if the model does not sufficiently capture the true
underlying dynamics of the robot, the learned policy may be
rendered infeasible when applied to the real system [8]. This
is one of the main reasons why studies of RL in robotics
applications are often limited to simulated environments.
Therefore, it is important to account for potential model
errors by using probabilistic models [9], [8] that explicitly
describe uncertainty about the model’s parameters (epistemic
uncertainty).

The application of RL approaches to real robotic systems
(Figure 1) is challenging because physical systems often
require consideration of safety or feasibility constraints [10],
which classical RL approaches do not explicitly model [11].
For example, picking and placing a mug with a robot
manipulator requires monitoring the physical limits of the
robot’s joints, collisions between the robot and itself, colli-
sions between the robot and other objects in the scene, and
collisions between the mug and the robot. In this example,
practitioners also need to consider additional, task-specific
safety constraints, such as keeping the orientation of the mug
upright so as to not spill its liquid contents. Unfortunately,
the trial-and-error nature of RL means the learned policy has
to experience constraint violations for such problems before
learning to avoid them. Furthermore, robotics is one such
domain where constraint violations should be minimized, or
in some contexts [12], avoided at all costs.

In this work, we incorporate safety constraints into MBRL



in order to minimize constraint violations during the training
phase. More specifically, we check whether predictions of a
probabilistic model violate safety constraints. We rely on a
GP formulation as it provides data-efficiency and principled
way of encoding uncertainty. Previous work on safe RL with
GPs formulates the problem as a constrained optimization
problem, where authors used moment-matching for long-
term predictions [13]. The moment-matching approach, how-
ever, makes Gaussian assumptions about the predictive state
distributions. At the same time, a sample trajectory to be
executed by the robot will ignore time correlations between
consecutive states [9]. We propose to use a trajectory-
sampling approach that directly generates sample trajectories
from the GP without making Gaussian assumptions on the
predictive state marginals, obeys time correlations between
consecutive states, and can be directly executed on the robot,
as seen in Figure 1 with an example trajectory.

In summary, the main contributions of the paper are as
follows: i) We propose a novel MBRL approach that takes
into account safety constraints without making assumptions
about underlying dynamical system characteristics. ii) The
proposed method preserves temporal correlations in the sam-
pled trajectories used in the MBRL policy training. We pro-
vide a comparison between two approaches for incorporating
constraints across two complex continuous control tasks. iii)
We show sim-to-real experiments for a constrained reaching
task where a safe policy is learned successfully within 100
seconds of data.

II. POLICY SEARCH WITH PROBABILISTIC DYNAMICS
MODELS

We consider robotic systems, where the dynamics evolve
over time according to

xt = f(xt−1,ut−1), (1)

where f : RD×RU → RD is an unknown transition function
that governs how the system’s state xt ∈ RD evolves over
time when a control action ut ∈ RU is applied. Given a
reward function R : RD → R, we are concerned with
finding a state-feedback controller (parameterized policy)
πθ : RD → RU whose parameters θ maximize the objective

J(θ) =

T∑
t=0

Ext
[R(xt) | θ] , (2)

where J(θ) is the expected long-term return that mea-
sures how good a policy is as the expected sum of step-
wise rewards R over a finite-horizon state trajectory τ =
{x0,x1, . . . ,xT }.

We assume the true system dynamics f are unknown or
difficult to express mathematically. MBRL is a class of RL
algorithms that address this issue by learning an approximate
dynamics model fψ with parameters ψ, which is then used
for internal simulations of the real system. These simulations
are used for training policy πθ.

To cope with an incorrect model fψ , e.g., due to insuffi-
cient data, we need to learn a probabilistic model that explic-
itly expresses uncertainty about the model parameters ψ [9],

[8]. Probabilistic dynamics models have been applied suc-
cessfully in robotics and have been shown to reduce model-
misspecification errors. This includes locally-weighted re-
gression [9], [14], probabilistic neural networks [15], and
GPs [8]. In general, we can use a dynamics model for
MBRL in one of two ways; 1) to generate predictions online
for model-predictive control [13], 2) to make long-term
predictions for training a global policy in model-based policy
search [16]. In this paper, we focus on the latter case within
the PILCO framework [17]. Here, a GP fψ is used as a model
for the transition function f . In the original paper, PILCO
uses moment-matching for generating long-term predictions
of the state evolution, which are then used to produce an
estimate of the expected long-term reward in Equation (2).
Based on this reward estimate, the policy parameters θ are
optimized. Note that the PILCO framework does not consider
the case of (state) safety constraints, which we consider.

III. GAUSSIAN PROCESS DYNAMICS MODELS

A Gaussian process (GP) is a distribution over functions
f : X → Y , and they are fully defined by a mean
function m(·) and a covariance function (kernel) k(·, ·). If
not stated otherwise, we assume m ≡ 0 throughout the paper.
The kernel k controls the smoothness, differentiability, and
variance properties of the GP. We consider the RBF kernel

k(x,x′) = σ2
f exp(−

1

2
(x− x′)TΛ−1(x− x′)), (3)

where x,x′ ∈ RD. Here, σ2
f is the variance of the function

modelled and Λ = diag(λ2
1, . . . , λ

2
D) is a diagonal matrix of

(squared) length-scales λd. The parameters σf and λd of the
kernel are the GP’s hyper-parameters ψ, which we optimize
by maximizing the log-marginal likelihood

log p(y |X) =− 1

2
yT
(
K + σ2

εI
)−1

y

− 1

2
log|K + σ2

εI|−
N

2
log 2π,

(4)

where X = [x1, . . . ,xN ]T and y = [y1, . . . , yN ]T are the
N training inputs and targets, respectively.

The posterior predictive distribution of the GP at test
location x∗ is Gaussian with mean and variance given by

µ∗ = kT∗
(
K + σ2

εI
)−1

y (5)

Σ∗ = k∗∗ − kT∗
(
K + σ2

εI
)−1

k∗, (6)

where k∗∗ = k(x∗,x∗), k∗ = k(X,x∗), K = k(X,X),
and σ2

ε = 10−4 is a “nugget” for numerical stability.
To learn a dynamics model f that describes the transition

dynamics p(xt | xt−1,ut−1) for RL, we train a GP using
Equation (4) on one-step transitions ((xt−1,ut−1),xt), map-
ping each state-action pair (xt−1,ut−1) to next states xt.
To make GP predictions at test locations (x∗,t−1,u∗,t−1),
we evaluate Equation (5)–Equation (6). These equations are
a distributional representation where the GP posterior is
specified using its distributional parameters. In later sections,
we discuss a pathwise (sample-based) representation and
highlight its advantages in this setting.



GP dynamics models have sample-efficiency and smooth-
ness properties, so that they can be applied to real-world
robotic systems [8].

A. Long-term Predictions

In episodic task settings, the evaluation of the expected
return J(θ) for any policy πθ, requires us to compute the
predictive marginal state distributions p(x1), . . . , p(xT ). In
the context of GP dynamics models, these marginals cannot
be computed exactly due to the nonlinearity of the GP, so that
we need to resort to approximations. In [17], [13], the authors
use a moment-matching approximation, where the mean µt

and covariance Σt of every state marginal p(xt) is computed.
These computations can be done analytically for a suitable
choice of kernel functions, such as the RBF kernel in Equa-
tion (3). Alternative approaches to computing the desired
moments have also been proposed, e.g., by means of lineari-
sation of the GP [8], where the assumptions on the kernel
are much less restrictive. In [18], the authors determine the
means and covariances of the state marginals as Monte Carlo
estimates within a sampling setting. In the context of neural
network ensembles, it is possible to determine the moments
of the state marginals as Monte Carlo estimates [15].

To generate a realisation of a trajectory from these pre-
dictive state marginals, it is possible to individually sample
states xt ∼ N (µt,Σt). However, a trajectory generated in
this way is “disconnected” because it does not account for
temporal correlations, making it unsafe for robot execution.
The moment-matching distributional representation assumes
that the state marginal distributions p(xt) are Gaussian.
This assumption may hinder our ability to learn meaningful
policies in complex environments where the state marginals
can be multi-modal and highly non-Gaussian. Wherever pos-
sible, we must relax our modeling assumptions to improve
the chances of executing trajectories sampled from learned
models on physical hardware.

IV. SAFE TRAJECTORY SAMPLING

In this section, we detail our approach to safe RL using an
approach that uses sampled trajectories from the GP posterior
instead of moment-matching in order to compute the long-
term expected return. Further, we will explicitly account for
safety constraints.

A. Efficient Trajectory Sampling from GP Posteriors

Instead of using state marginal distributions to generate
a trajectory realisation from the GP’s predictions, it is
possible to generate such a trajectory from the GP posterior.
In [19], the authors present an efficient GP posterior sampling
method where, instead of a distributional representation with
a mean and covariance, the GP posterior is considered as
a collection of sample paths. This pathwise perspective of
the GP posterior arises from representing the GP prior in
weight space [20]. By using Matheron’s trick, the pathwise

formulation of the GP posterior is

(f |X,y)(·)︸ ︷︷ ︸
posterior

d
= f(·)︸︷︷︸

prior

+ k(·,X)(K + σ2
εI)

−1(y − f(X))︸ ︷︷ ︸
data-dependent update

.

(7)
Here, the posterior is a sum of the (random) prior and a
(deterministic) data-dependent update term. Naively gener-
ating function/trajectory samples from this equation scales
cubically in the number of query points x∗. The key idea
behind the efficient sampling strategy proposed in [19] is
to use different representations of the GP prior and the
(deterministic) update term in Equation (7). Specifically, they
use a random Fourier features (RFF) prior, so that sampling
from this prior scales linearly in the number of query points
but cubically in the number of Fourier features. The update
term in Equation (7) is approximated by a sparse variational
GP update term [21], so that evaluating this term also scales
linearly in the number of query points.

In [19], the authors use this trajectory-sampling approach
instead of moment-matching within the PILCO framework
for long-term predictions. Using these sampled trajectories,
the expected return is then computed as a Monte Carlo
estimate according to

J(θ) ≈ 1

P

P∑
i=1

T∑
t=0

Ext
[R(xi,t) | θ], (8)

where P is the number of sampled paths from the GP
posterior.

While this approach works well for uncertain initial dis-
tributions p(x0), it does not account for safety constraints,
which makes it impractical for use in a real-world system.
In this paper, we will generalize this approach and explicitly
account for safety constraints, bringing us a step closer
applying RL to a real-world robotic system.

B. Adding Safety

We consider a set of safety constraints, such that trajec-
tories τ are safe to evaluate on the physical system. We
compare two approaches for incorporating constraints into
the policy optimization step: 1) we add an explicit penalty
to the reward function, so that R(xt) = r(xt)+c(xt), where
r(xt) is the original reward objective for the task and c(xt)
is a penalty term that accounts for the task constraints; 2) a
rejection sampling approach which, in addition to the penalty
term, also updates the policy using only the trajectories that
satisfy constraints. We assume that the reward functions
r(xt) and penalty terms c(xt) are known. Therefore, we
can assess how well a trajectory solves the task according
to R(xt) and how safe it is as the number of sampled
trajectories that violate constraints. To mimic real-world
conditions, each learning episode is terminated as soon as
a constraint is violated.

C. Reward Penalties

A common approach for incorporating domain knowl-
edge, inductive bias and safety-specifications into the learned
policy in RL is the addition of penalty functions to the



0 5 10 15
Episodes

0

10

20

C
u

m
u

la
ti

v
e

R
e
w

a
rd

Penalty + Rejection Sampling

Penalty

Unconstrained

(a) Rewards

0 5 10 15
Episodes

0.0

0.5

1.0

%
V

io
la

ti
n

g
T

ra
je

ct
o
ri

e
s

Penalty + Rejection Sampling

Penalty

Unconstrained

(b) Constraint violations

Fig. 2: Metrics (constrained cartpole) averaged across 8
random seeds, where we execute the latest policy and assess
rewards and constraint violations on the resulting trajectories.
(a) Cumulative reward based on step-wise rewards R. (b)
Number of constraint-violating trajectories across all seeds.

reward function. These penalties are soft constraints that
discourage the policy from certain regions in the state
space by associating nearby states with increasingly high
negative reward the closer they are to the bad regions. For
each environment, we design penalty terms c(xt) which
indicate proximity to constraint bounds. In line with MBRL
algorithms which differentiate through the reward function
R [17], [22], [18], we approximate discontinuous constraints
with smooth differentiable functions.

D. Rejection Sampling

Leveraging the pathwise representation of the trajectory
distribution [19], we check individual states in a batch of
trajectories sampled from the dynamics model for safety con-
straint violations. If any constraint-violations are present,the
corresponding trajectory is discarded. Only the remaining
set of trajectories are used to estimate the expected return
in Equation (2) by way of Monte Carlo. In cases where all
trajectories are rejected, we re-sample a new set of paths
and attempt rejection sampling again. We repeat until non
constraint-violating paths are found or the number of path
re-sampling attempts are exhausted. In such cases, we count
on the diversity of the initial state distribution to start the next
policy update step from a different starting state where it may
be easier for the current policy to avoid constraint violations.
The pathwise trajectory sampling [19] approach presents the
GP posterior distribution as a collection of individual full-
horizon trajectories in functional form; see Equation (7).
Unlike the moment-matching trajectory representation, this
form allows us to more easily evaluate and differentiate
between safe and unsafe trajectories.

V. EXPERIMENTS

In this section we evaluate the aforementioned methods
for safe trajectory sampling in Section IV according to; 1)
performance as specified by the combined reward R(xt), 2)
safety as the number of constraint-violating trajectories. In
particular, we evaluate our method on two constrained con-
tinuous control tasks, namely a cartpole swing-up task and a
reaching task on a 7 DOF robot. For the latter environment,
we also demonstrate real-world policy execution and show

that a learned safe policy can be executed on a real-robot;
see Figure 3a.

For each task considered, we train a separate independent
multivariate GP for each output dimension of the learned
dynamics model f : RD × RU → RD. Furthermore, the
targets of this model are the differences ∆t = xt − xt−1

of two consecutive states. Learning state differences ∆t is
a common design choice for MBRL with GP dynamics
models [17], [23]. To infer next states xt, we now first
sample ∆t from the drift distribution p(∆t | xt−1,ut−1)
and add it to the previous state xt−1.

For all task settings, we learn an RBF network policy

πθ(·) = g

(
Nc∑
i=1

ωik(·, ci)

)
, (9)

where g(x) is a function that scales the output of the RBF
network to an appropriate range [a, b] where a, b ∈ RU ,
thereby accounting for torque limits or other constraints on
the control signals. The parameters θ of the RBF network
are a set of Nc weights ωi, RBF kernel centers ci, and
RBF kernel hyperparameters; see Equation (3). As with the
dynamics model, we also train a separate independent RBF
network for each output dimension u of the policy.

We set the maximum number of re-sample attempts for
rejection sampling to 10 for all experiments.

A. Constrained CartPole Swing-up

The cartpole swing-up task is a commonly used bench-
mark in model-based RL. It consists of an under-actuated
system where the objective is to swing a pole and balance
it upright by moving the cart. The observations xt are made
up of the position of the cart x, the angle of the pole θ,
the velocity of the cart ẋ, and the angular velocity of pole
θ̇. We control the system by applying a horizontal force
u ∈ [−10, 10].

In the constrained version of the task, the cart’s position
x is restricted such that x ∈ [−0.5, 0.5]m. This constraint
places a bound on the left and right sides of the cart, limiting
the set of optimal policies to those that swing the pole within
this narrow region. We implement the penalty function for
this bound as the sum of two Gaussian distributions with
mean µ1 = −0.5 and µ2 = 0.5 respectively. The variance
σ2, which controls the strength of the penalty term, is set
to σ2 = 0.000625 for both distributions. This means the
penalty meaningfully contributes to the reward R when the
cart’s position x is within 0.05m from either boundary. We
count states where x ≤ −0.5 and x ≥ 0.5 as violations
and terminate the episode immediately. We also use this
termination condition during rejection sampling to decide
which trajectories to discard and which trajectories to keep
for evaluating the expected return in Equation (8). We set
an episode length of 4.0 seconds and divide it into a time
horizon of 50 time steps. All other task settings for cartpole
are kept the same as in [13].



(a) Policy comparison on simulated (bottom) and real robot (top) (b) Limit-Z environment

Fig. 3: Illustration of policy execution (a). The environment (b) consists of the robot placed on a table, with a target position
p (red sphere) behind the robot and a low ceiling constraint (blue plane) above the robot.

1) Performance Evaluation: Our results in Figure 2a for
cartpole are consistent with that of [19] where the MBRL
approach of combining PILCO and a pathwise GP dynamics
model was first introduced. Both methods are able to learn
successful policies for swinging up the pole within 6–8
episodes even though introducing constraints makes solving
the task more challenging.

2) Safety Evaluation: In general, our results in Figure 2b
show that both the penalty term and the rejection sampling
approaches had difficulties staying safe during training for
this environment. We attribute this difficulty to the unique
consideration of immediately terminating the episode as
soon as a single constraint violation is detected, a behavior
which is analogous to most safety-critical real-world systems.
Terminating the episode early means the RL agent has to
operate with less data to solve the problem. For the cartpole
setting, the agent had enough data to solve the task but not
while respecting constraints. However, both proposed safety
approaches still outperform the baseline approach where
constraints are ignored altogether.

B. Constrained Reaching Task

We set up the learning environment in PyBullet [24]
where a simulated 7-DOF Franka Panda robot arm has to
reach a fixed Cartesian target with its end-effector. The
state observations xt = [q1, q2, ..., q7, q̇1, q̇2, ..., q̇7] ∈ R14

consist of joint positions qi and angular velocities q̇i. We
control the robot with a continuous set of actions ut =
[∆q1,∆q2, ...,∆q7] ∈ R7, where each action corresponds to
a specific joint residual value which indicates the change in
joint position at time t. The low-level PID controller of the
robot is thus provided with joint position targets qt−1 +ut.
The benefit of controlling the robot this way is that actions
are centered at 0, i.e., an action ut = 0 translates to the robot
staying still. The range of each residual value is constrained
to facilitate smooth robot motion.

We place a ceiling constraint at a height of 0.85 m to
mimic a factory setting where the robot has to operate in
an environment with a reduced workspace. This constraint
is shown as a blue plane in Figure 3b and is violated if
the robot’s end-effector goes above it. To discourage the
policy from approaching the constraint, we add a penalty
term c(xt) = −sigmoid(−100(FK(xt)z − 0.75)) where

FK(xt)z refers to the z-component of the end-effector
position computed using forward kinematics FK(·). The
rejection criteria for this environment is FK(xt)z ≥ 0.85 m.

For our reaching experiments (shown in Figure 3b), the
target p is positioned behind the robot at p = [−0.4, 0.0, 0.3]
to increase the difficulty of the task. The reward r(FK(xt))
is a Gaussian with mean µ = p and covariance Σ = I . We
set a time horizon of 50 time steps which corresponds to an
episode length of 12.0 seconds.

1) Performance Evaluation: As with the cartpole domain,
the PILCO algorithm with a pathwise GP dynamics model
is able to learn the task successfully (Figure 4a). Both
approaches (reward penalty and rejection sampling) converge
to a solution at around 5 episodes. This is extremely data-
efficient since it corresponds to around 100 seconds of data
in the Pybullet simulation (including data used to pre-train
the GP).

2) Safety Evaluation: In our results shown in Figure 4b
the rejection sampling approach has constraint violations in
the beginning of training but improves in later episodes
where the number of constraint violations converges to
0. However, the penalty term approach avoids constraint
violations even after the first policy update at episode 0 in
Figure 4b. After 25 episodes, both approaches have learned
safe policies according to the constraints we consider.

C. Real-world Policy Execution

We replicate the constrained reaching task in the real-
world by placing a black tarp at 0.85m from the table as
shown in Figure 3a. After training a policy and a dynamics
model in the PyBullet environment (Figure 3b), we execute
it directly on the physical robot system. As in the Pybullet
simulation, we provide the policy with real-robot joint posi-
tions and angular velocities at every time step and predict
control commands ut = ∆qt + qt−1. These are sent to
a low-level controller running on the robot which in turn
moves the robot. We repeat this process until we reach the
target. We found that the physical robot behaves similarly
to the simulated robot and avoids the “ceiling” constraint
successfully, even though the starting state is not exactly the
same each time due to measurement noise. A comparison of
executing the same policy in the simulated environment and
on the robot is shown in Figure 3a.



0 5 10 15 20 25
Episodes

0

20

40

C
u

m
u

la
ti

v
e

R
e
w

a
rd

Penalty + Rejection Sampling

Penalty

Unconstrained

(a) Rewards

0 5 10 15 20 25
Episodes

0.0

0.5

1.0

%
V

io
la

ti
n

g
T

ra
je

ct
o
ri

e
s

Penalty + Rejection Sampling

Penalty

Unconstrained

(b) Constraint Violations

Fig. 4: Results for the constrained 7-DOF reaching environ-
ment averaged across 9 random seeds. a) The cumulative
reward based on step-wise rewards R. b) The number of
constraint violating trajectories across all seeds. For both
metrics, we execute the latest policy and assess rewards and
constraint violations on the resulting trajectories.

VI. DISCUSSION

Our results show that both the reward penalty and rejec-
tion sampling approach are effective at reducing constraint
violations in the environments we consider compared to the
baseline. We also observe that rejection sampling does not
hurt the task performance or severely worsen the number
of constraint violations by the learned policy despite the
rejection sampling approach working with less data when
computing the expected return. A possible explanation for
this observation is that even though the penalty-only ap-
proach uses more trajectories from the model, the additional
(faulty) trajectories may contribute to the variance of the ex-
pected return. As such, the policy’s learning and constraint-
satisfaction ability is impacted.

Motion planning methods produce a state trajectory τ =
{x0,x1, . . . ,xT } and execute it on the physical robot using
a low-level trajectory-follower controller. However, we opt
for directly executing a policy instead since it is more
flexible and can smoothly recover from deviations from the
optimal, safer trajectory in case of disturbances. Low-level
controllers such as PID, in comparison, would jerk the robot
proportional to how far it is from the desired trajectory and
may overshoot, potentially causing constraint violations as a
result. Also, trajectory following may not even be possible
since some robot systems for real-world execution issue an
abort status when the current state differs too much from the
next way-point in the trajectory.

The dynamics of the experiments considered in this work
are smooth. Particularly for the reaching task in free space.
This means the state configuration of the robot changes
smoothly given control inputs. As such, we can model them
sufficiently accurately with an RBF-kernel GP. However, for
more complex tasks with contact dynamics such as picking
and placing, the true dynamics would be non-smooth. In such
a setting, additional consideration would have to be taken
when learning the dynamics model with GPs.

VII. CONCLUSION

In this paper, we introduce an approach that explicitly
accounts for safety constraints within a model-based RL

set-up. In particular, we use sampled trajectories from a
GP dynamical model to evaluate whether safety constraints
have been violated. We evaluate two different cases of
incorporating constraints into learning: a) by adding a penalty
function to the reward; b) by additionally rejecting trajectory
samples that violate the constraints. Both approaches can
work well as we demonstrate on two challenging robotic
systems: the cart-pole swing-up and a reaching task with
a Panda robot in both simulation and real world. In future
work, we will extend the proposed approach to deal with
robotic manipulation tasks using multi-modal data such as
tactile, visual, and proprioceptive.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” IJRR, 2011.

[2] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, J. A. Bagnell, and S. Srinivasa, “CHOMP: Covariant
Hamiltonian Optimization for Motion Planning,” IJRR, 2013.

[3] H. Attias, “Planning by probabilistic inference,” in AISTATS, 2003.
[4] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion Planning as

Probabilistic Inference using Gaussian Processes and Factor Graphs.”
in RSS, 2016.

[5] D. Zhou, R. Jia, H. Yao, and M. Xie, “Robotic Arm Motion Planning
Based on Residual Reinforcement Learning,” in ICCAE, 2021.

[6] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” JIRS, 2017.

[7] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep Reinforcement
Learning for Robotic Manipulation with Asynchronous Off-Policy
Updates,” in ICRA, 2017.

[8] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” TPAMI, 2015.

[9] J. Schneider, “Exploiting Model Uncertainty Estimates for Safe Dy-
namic Control Learning,” NeurIPS, 1996.

[10] S. Rubrecht, V. Padois, P. Bidaud, M. Broissia, and
M. Da Silva Simoes, “Motion Safety and Constraints Compatibility
for Multibody Robots,” AR, 2012.

[11] J. Garcı́a and F. Fernández, “A Comprehensive Survey on Safe
Reinforcement Learning,” JMLR, 2015.

[12] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in
Robotics: A Survey,” IJRR, 2013.

[13] S. Kamthe and M. P. Deisenroth, “Data-Efficient Reinforcement Learn-
ing with Probabilistic Model Predictive Control,” in AISTATS, 2018.

[14] H. Kim, M. Jordan, S. Sastry, and A. Ng, “Autonomous Helicopter
Flight via Reinforcement Learning,” NeurIPS, 2003.

[15] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Reinforce-
ment Learning in a Handful of Trials using Probabilistic Dynamics
Models,” NeurIPS, 2018.

[16] M. P. Deisenroth, G. Neumann, and J. Peters, “A Survey on Policy
Search for Robotics,” Foundations and Trends in Robotics, 2013.

[17] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A Model-based and
Data-efficient Approach to Policy Search,” in ICML, 2011.

[18] P. Parmas, C. E. Rasmussen, J. Peters, and K. Doya, “Flexible Model-
based Policy Search Robust to the Curse of Chaos,” in ICML, 2018.

[19] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P.
Deisenroth, “Pathwise Conditioning of Gaussian Processes,” JMLR,
2021.

[20] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[21] M. Titsias, “Variational Learning of Inducing Variables in Sparse
Gaussian Processes,” in AISTATS, 2009.

[22] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel,
“Model-ensemble trust-region policy optimization,” arXiv preprint
arXiv:1802.10592, 2018.

[23] B. Van Niekerk, A. Damianou, and B. Rosman, “Online Con-
strained Model-based Reinforcement Learning,” arXiv preprint
arXiv:2004.03499, 2020.

[24] E. Coumans and Y. Bai, “PyBullet, a Python Module for Physics Simu-
lation for Games, Robotics and Machine Learning,” http://pybullet.org,
2016–2021.


