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Abstract— While mobile navigation has been focused on
obstacle avoidance, Navigation Among Movable Obstacles
(NAMO) via interaction with the environment, is a problem
that is still open and challenging. This paper, presents a novel
system integration to handle NAMO using visual feedback.
In order to explore the capabilities of our introduced system,
we explore the solution of the problem via graph-based path
planning in a photorealistic simulator (NVIDIA Isaac Sim), in
order to identify if the simulation-to-reality (sim2real) problem
in robot navigation can be resolved. We consider the case where
a wheeled robot navigates in a warehouse, in which movable
boxes are common obstacles. We enable online real-time object
localization and obstacle movability detection, to either avoid
objects or, if it is not possible, to clear them out from the
robot planned path by using pushing actions. We firstly test
the integrated system in photorealistic environments, and we
then validate the method on a real-world mobile wheeled robot
(UCL MPPL) and its on-board sensory and computing system.

I. INTRODUCTION
Robotic systems need to navigate in several kinds of real-

world environments, in order to complete complex mean-
ingful tasks. Mobile robot navigation and path planning has
been extensively studied in the past, mainly to resolve the
problem of obstacle avoidance (either those are static or
dynamically moving around) [1]. However, there are many
unpredictable factors in real life applications. For instance,
unexpected obstacles might block a planned path. Imagine
a cardboard box blocking a narrow passage in a warehouse.
Such obstacle may not be able or need to be avoided, but
rather being moved away in order to free the passage. It
is for this reason that developing the ability for a robot to
interact with and move proactively among movable obstacles
is an interesting open problem to address (i.e., in this paper,
obstacles that can be pushed away).

The aforementioned problem is called Navigation Among
Movable Obstacles (NAMO), that was heavily studied by
Mike Stilman, via a series of papers that started in 2004 [2].
The original focus was on humanoid robots. The NAMO
problem is very complex (NP-Complete in its simplest form),
since it has a large search-space and a configuration space
that changes over time. Thus, approximated solutions are
aimed. To date, there are very few systems that implement
full NAMO autonomy for mobile robots. As discussed in
the related work below, the very few works on the topic
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Fig. 1: Gazebo (left) and NVIDIA Isaac (right) simulated
warehouse environments, with boxes blocking the corridors.

focused usually on a part of the problem (e.g., visual servoing
control or path planning), while very few were tested on real
hardware and in real-time. Solving the NAMO problem in
the real world, requires four parts, that we try to resolve and
integrate in a unified system in our work:

1) detecting and localizing movable obstacles in the en-
vironment,

2) plan the path to a goal, considering actions –pushing,
in our case– with the movable obstacles,

3) resolving the robot localization and mapping part dur-
ing navigation/pushing, and

4) implementing the whole system on a real mobile robot.

Regarding the first problem (movable obstacle detection
and localization), several deep learning methods can be used
to localize obstacles with RGB-D or other exteroceptive
sensory methods. There are two difficulties to consider
though. Firstly, the majority of deep learning methods require
the collection of a large number of high quality real-world
data. Datasets for training can alternatively be produced in
simulation with augmentations, but then sim2real techniques
need to further be applied. In this paper, we take advan-
tage of the recently developed photorealistic NVIDIA Isaac
simulator, to be able to resolve easier the production of large
datasets for training, as it has been used in [3]. This approach
has been studied with different simulators as well [4], [5].
What we achieved is an easy sim2real problem solution,
by demonstrating direct application of the visual methods
on the real robot. This visual ability could not be achieved
with standard simulators as Gazebo (see Fig. 1). Secondly,
some standard works in NAMO were considering only visual
obstacle detection and localization [6], [7]. In this paper,
we further investigate if an obstacle is really movable by
interacting with it via pushing. In case an obstacle is too
heavy or fixed, and, thus, cannot be moved around, we update
our planned path to consider alternative solutions.

Regarding the second problem, in this paper, we improve



Fig. 2: Our developed Navigation Among Movable Obstacles (NAMO) pipeline.

the method introduced in [8], by adding the aforementioned
visual and interactive obstacle detection and localization
solution into the A* planner, as well as improving the path
planning sequence to avoid robot drifts. The whole object
detection and path planning system is combined with a
localization and obstacle mapping technique, to keep an
updated map of the surrounding environment, in order to
solve the third problem above. Last, taking advantage of
the photorealistic simulator, we apply the method on several
simulated and preliminary real-world scenarios in obstacle-
unknown environments.

For our testing, we consider a warehouse environment,
where cardboard boxes are typical items and might be left
in passages that prevent free-route navigation and need to be
manipulated (e.g., pushed). The proposed system pipeline is
shown in Fig. 2. In the next section (Sec. I-A), we review
related work of NAMO. Then, in Sec. II, we describe the
obstacle detection and localization method, the path planning
adaptation, and the robot localization and mapping solution.
In Sec. III, we present the experimental validation of the
introduced pipeline in simulation and on the real robot.
Finally, in Sec. IV, we conclude by discussing future problem
directions.

A. Related Work

Navigation Among Movable Obstacles (NAMO) is a prob-
lem that was heavily studied theoretically by Mike Stilman
in 2004-2007 [2], [9], [10]. Being identified as an NP-
Hard problem in its simple formulation, several optimization
techniques using graphs were introduced, e.g., [11], [12],
[13]. All those works considered the problem on mobile
robots either theoretically or applied under assumptions, for
instance, environments were known or open-loop controllers
were used. There were several extensions of the problem
to arm/leg manipulators [14], [15], but they are beyond the
interest of this paper. A solution to the NAMO problem

that considered learned dynamic constraints [16] utilized
a physics-based simulator with limited visual capabilities,
while scene affordances [17] were used in standard 3D
simulators (similar to Gazebo) to generate simple open-loop
path plans. Our work is based on the NAMO algorithm
implemented in [8] (which in turn extends the path planner
introduced in [18]). The original paper and its extension [19]
generate very simple 2D simulations, where obstacles were
detected from a 2D representation in an image map.

Our work, is the first (as far as we are aware) integration
of visual and obstacle-interactive feedback sensing, to detect
and localize movable obstacle, using photorealistic environ-
ment (NVIDIA Isaac) to utilize this knowledge in an online
NAMO planning algorithm on a real mobile robot.

II. METHODS

In this section, we firstly present the methods developed to
integrate object detection and localization via a photorealistic
simulator (NVIDIA Isaac). Then, we present the adapted
path planning and mapping/localization algorithms to allow
Navigation Among Movable Obstacles.

A. Simulator and System Setup

NVIDIA’s Turing architecture and the release of their RTX
series GPU [20], with hardware ray-tracing [21] acceleration
in 2018, has made real-time photo-realistic applications pos-
sible, including robotic simulators. Ray-tracing can almost
emulate how nature light rays are passed into our eyes,
with the result being highly photo-realistic. The NVIDIA
Omniverse platform is an RTX-powered open graphics plat-
form for real-time collaboration and resource sharing. The
NVIDIA Isaac Sim is a robotic simulator built on top of
the Omniverse platform, providing environment and sensory
data, connection to ROS, and domain randomization features.
Such a simulator can fit the requirements of solving the
sim2real problem in NAMO applications for mobile robots.



Fig. 3: Isaac Sim photorealistic simulation of a warehouse
environment, containing the UCL MPPL mobile robot.

In order to experiment with our developed NAMO method,
warehouse environments were generated in the Isaac Sim
simulator (see an example in Fig. 3). To exploit the photo-
realistic capabilities, high definition textures and decorative
objects were added in the scene. We developed a plugin to
facilitate the addition of objects to the scene and enable ROS-
control for the robot. Our UCL MPPL robot (that includes
an omnidirectional robot base) is loaded into the scene,
supplemented with the addition of components, including the
robot’s on-board RGB-D cameras and 2D lidar sensors.

B. Movable Obstacle Detection and Localization

There are two ways obstacles will be detected and added
in the map, while the robot is localizing itself in it. The
original map that it is given, includes only areas of the
environment that are fixed. For instance, in a warehouse, a
map might include the fixed walls. These maps are usually
easy to be identified and provided, either by creating a model
using lidar/visual sensors with a moving robot (this is the
way we created our maps in this work), or via the physical
environment structure design. Global A* shortest-path plans
are created using those predefined maps. Although, the
interesting part is how one can add obstacles in the map and
how one can specify if those obstacles are movable or not.
This will affect the local path plan, when moving to a goal.
For instance, one might detect from distance a cardboard
box, but if it is too heavy to be pushed, then it might be
considered by the robot as a static obstacle in the map. There
are two types of visual obstacles recognition methods that
we utilized: a deep learning-based object localization and an
April-tag one. We describe both below. Robot localization is
solved by fusing (with Extended Kalman Filtering - EKF)
data from the wheel odometry, the two 2D lidar sensors
(one placed in the right front part and one in the left back
part of the robot), and the IMU on the robot, similar to the
method we have implemented in [22]. Notice that when an
object is classified as movable and it is manipulated in the
environment, we avoid considering the lidar data that belong
to it, as it breaks the visual localization part of the system.

1) Visual/RGB-D Based Pose Estimation: With the
growth of supervised deep learning, several methods of 3D
object pose estimation have been proposed. In this work, we
mainly use the Deep Object Pose Estimation (DOPE) [23]

network. This is a state-of-the-art network that can easily be
trained on simulated and real-world data. One could use other
similar networks, such as the PoseCNN [24]. DOPE uses
pre-trained datasets for real-time object detection and 3D
pose estimation. We used a pre-trained network on the YCB
(Yale-CMU-Berkeley) object dataset that contains common
house-hold objects, and fine-tuned it with scaled-up boxes
that represent cardboard boxes in warehouse environments.
For testing, those cardboard boxes were added in the Isaac
Sim environment via a custom plugin, while DOPE provided
pose estimation from the RGB-D sensor input, as illustrated
in Fig. 4. When a cardboard object is detected in the field of
view of the robot, then it is added as a potentially movable
obstacle. If the detected object is not in the list of potentially
movable obstacles, then it is added as a static obstacle in
the environment map. If the object is not detected by the
network, then the corresponding point cloud is considered
as a static obstacle in the map.

Fig. 4: Obstacle detection and 3D pose estimation, based on
DOPE. From left to right: obstacle as placed in simulation,
object pose estimation in Isaac Sim, and obstacle in the map.

2) April-Tag Based Pose Estimation: An alternative way
that can be used in controlled environments to detect and
localize obstacles are tags/markers. It might be easy to
apply, for instance, a tag in every item that you know
is movable in a warehouse (e.g., cardboard boxes). April-
tags [25] is such an alternative method to initially validate
the proposed pipeline and later compare it with the results
from the aforementioned DOPE-based approach in terms
of pose accuracy. We applied different April-tags on each
box in the environment that enabled the detection and 3D
localization of each cardboard box. Again, when an object
is detected/localized using the markers, it is added in the
map as a potentially movable obstacle.

3) Pushed-Based Movability Estimation: Path planning
research for mobile robots are mainly based on visual data.
The reason is that the main goal in most of those works
is obstacle avoidance. In our case, we care more about
interaction with obstacles. If there is a path that can avoid
such interaction, it might be preferred, but if there is not such
a path towards a goal, then interaction with the obstacle is
essential. When an obstacle is detected and localized, it is
added in the map as a potentially movable object. Although,
a robot can only deduce the movability via interaction. Thus,
when a local path is planned, and it includes a pushing action
with the obstacle (see Sec. II-C below), we allow the robot
to attempt it. We remove the 2D lidar data that belong to the
obstacle, in order to not confuse the localization system, but
we allow the robot to gradually push the object. If the robot



Fig. 5: NAMO with object M1 [8]: move to obstacle (c1),
push the obstacle (c2), move to the goal (c3).

does not move in the map, when it is pushing the obstacle
with the maximum force for few seconds (in our work we
allow 5sec of pushing), then we consider the obstacle as
non-movable/static. Notice, that if a static object is pushed,
it might create spinning of the wheels. In our case, we did
not notice any localization issue in the map, given that lidar
and IMU sensing is balancing this wheeled odometry outlier
via the EKF.

C. Adapted Navigation Among Movable Obstacles (NAMO)

So far, we have explained the way that the robot uses a
map of the fixed environment to localize itself in it, detect
obstacles, localize them, and update the type of the obstacles
in the map as movable or non-movable/static via interaction.
In this section, we will explain the modifications we did
in the NAMO algorithm introduced in [18], [8] to handle
realistic partially unknown environments, in order to enable a
complete system integration. The whole pipeline is illustrated
in Fig. 2.

First, a predefined map of the robot’s environment is
provided and converted to a 2D SVG (Scalable Vector
Graphics) image map. The map was generated by the robot
moving manually in the environment, using its localization
system as described above, and the 2D lidar data from the
sensors in the front and back part of the robot. Static objects,
such as walls and other DOPE-based detected objects are
added in the map, along with a goal robot position. Then,
the original A* algorithm of [8] is used to generate a planned
path to the goal. We define heuristics and cost functions
with weights such that if a clear path is detected, then it
is preferred over other paths that might include interaction.
The path is given to the robot controller, and wheel joint
commands are generated in order to follow the path. Robot
localization gives the feedback in order to correctly follow
the generated trajectories. As the robot navigates to the
goal position, unknown cardboard boxes might be detected.
Their poses are visually estimated via DOPE or April-tags
and the new objects are added in the map, as potentially
movable ones. With the addition of each obstacle, the robot
path is locally recomputed in three phases as illustrated in
Fig. 5: plan to obstacle (c1), push obstacle (c2), and plan
to goal (c3). If a push attempt fails, as we described above,
the map environment is updated with this obstacle as non-
movable/static and a path re-plan is performed. Moreover, we

(a) (b) (c)

Fig. 6: Obstacle pose estimation integrated with NAMO: (a)
obstacle positions in the simulated environment, (b) updated
map after addition of estimated box poses, (c) obstacle
transforms within the robot’s map.

have tweaked the pushing action, such that when the pushing
is done, the robot first backs-up a little and moves back to the
planned path by a simple collision avoidance with the moved
obstacle. This is especially helpful as obstacles usually drift
outside the planned pushing trajectory and might result in
collisions.

III. EXPERIMENTAL RESULTS

In this section, we present a set of experiments that were
performed to evaluate the success of the proposed pipeline.
Initially, we discuss the accuracy of obstacle localization
in the Isaac photo-realistic simulator. These estimations
are then incorporated into our developed NAMO method,
where the generated trajectories allow a mobile robot to
successfully navigate to a goal, whilst clearing the path
of movable obstacles in simulation. Finally, this pipeline is
preliminary validated on a real wheeled robot, UCL’s MPPL,
demonstrating it’s feasibility of bridging the sim2real gap.

A. Simulation Evaluation

Fig. 7: Regions of the warehouse environment (blue: starting
robot pose; orange: goal robot pose).

1) Object Pose Estimation Accuracy: As outlined in
Sec. II-B, two separate object pose estimation methods were
employed in this study. Here we will present a comparison
between the two methods (DOPE and April-tags) and test
their suitability for box pose detection within the NAMO
algorithm. A benefit of testing these methods in simulation is
that we have the knowledge of the ground truth position of all
obstacles within the simulated environment. We demonstrate
the results in a warehouse environment of three regions (see



Fig. 8: Robot localized in map with NAMO plan.

Fig. 7). Three boxes were placed at the passage between
two regions in order to block it: two marked with an April-
tag at the first passage and one without an April-tag at
the second passage. We repeated the experiments multiple
times with slightly different object positioning and robot
approach direction (roughly 50 variations). We noticed that in
Isaac Sim the detected DOPE and April tag obstacles, were
localized roughly with a similar accuracy (15cm in average).
We verified this in the real world with actual cardboard boxes
and April tags. Given that those boxes are of size 100cm3,
the pose estimation error did not affect any of the pushing
accuracy actions. The object detection rate was 100% (i.e.,
there wasn’t any case that an object was not detected), even
when they were partially occluded by a wall.

2) Integration with the NAMO Algorithm: The obstacle
pose estimation was then integrated with the NAMO algo-
rithm described in Sec. II-C. Obstacles, both movable and
non-movable/static, were positioned around the warehouse
environment in the Isaac Sim simulation. The boxes were
either cardboard boxes or marked with April tags. We had
always at least one object being non-movable (by making
them too heavy). An example, as appears in the video, is
when the robot detects two boxes blocking a passage, it tries
to push the closet one (which is too heavy), and then re-
plans and pushes the second one to free the path. Prior to
the test runs, the NAMO algorithm has no knowledge of the
objects or their movability. The movability of an object is
determined by the result of a push attempt (we also applied
pushing and pulling actions, but because of the real hardware,
in this paper, we focus only on pushing ones). Two examples
of the experiments are shown in Fig. 6.

The goal position is marked in orange and the start
position in blue. The NAMO algorithm was provided with
the initial environment map and a set of trajectory points
were generated to navigate the robot to the goal pose.
During the execution of this path, unknown box obstacles
are detected and 3D pose estimations are generated. The box
pose estimations are then added in the map, as visualized
in Fig. 6-(b,c). Once a new path has been generated, the
robot continues it’s journey towards the goal pose. Movable
obstacles are cleared from the path with a push action and
those that cannot be pushed after an attempt, are marked as
non-movable in the updated map. We have ran one hundred
experiments with different uniformly random obstacle posi-

Fig. 9: Top to bottom: robot presented with an obstacle;
the April-tag is detected (RViz visualization); the obstacle
is added to the environment map and our NAMO-based A*
path is computed; the robot trajectory–target and actual.

tions blocking passages in this environment, and the average
run-time to complete the task was around 200s, with the
complete path being approximately 18m.

B. Real-World Evaluation

To demonstrate that NAMO with the integrated object pose
estimation, as tested in simulation, could be transferred to the
real-world, a preliminary experiment was made with UCL’s
MPPL robotic platform. This experiment would implement
the same pipeline as presented in Fig. 2, with the real robot
directly replacing the simulated robot, receiving the same
trajectory commands and supplying current pose updates via
EKF-based localization.

A simple test environment was created with two spaces
connected by a small corridor (see Fig. 9), such that the robot
could not pass if an obstacle is present. A light cardboard
box of dimensions 0.5×0.4×0.4m with a tag was placed in
the corridor, blocking the entrance to the second space. For
a new environment configuration, two items are required, a
map for robot localization and an environment map for the
NAMO algorithm. A lidar-based map of the environment
was made, utilizing a SLAM (i.e., ROS gmapping), while the
initial environment map of the walls was provided to NAMO.
Fig. 8 shows the SLAM generated map with visualization of
the robot; the environment map, and an example plan to the
goal position generated from our NAMO method, overlaid.

A navigation plan is made to the goal position in the
second space in the environment, the robot begins to execute
the plan while perceiving it’s environment with the RGB-D
camera. If a flag is raised to indicate that an obstacle has been



Fig. 10: The real robot clearing an obstacle from the path to move to a goal (inset picture is the robot pose in the map).

detected, the robot aborts the plan and an obstacle is added
to the environment map, labeled as a potentially movable
one. If no plan can be found around the obstacle, a plan for
obstacle pushing is made. The robot then executes the new
plan, pushing the obstacle with the front of the mobile base
until a clear path is available and the goal position can be
reached. Fig. 9 illustrates the stages of the experiment.

The experiment was performed with similar start and goal
positions (we allowed some variations to prove autonomy),
20 times. The box obstacle was moved to different locations
within the corridor section of the environment. The obstacle
was detected in all trials and the robot was able to push
the box, clearing a path to the goal with a success rate of
100%. If the box was positioned as such that the robot could
navigate around it, it did so. Two times, it was observed that
while the robot moved towards it’s goal, the laser scan lost
some minor alignment with the robot map. Although, in none
of the trials did this error result in a failure to push the box
to clear the path to the goal. Fig. 10 shows a sequence of
images taken throughout one of the experiments, where the
robot pushes the box to clear a path and moves to the goal
position. Last, we also tried to block the box with our feet
so that it cannot be moved, and allowed the robot to test
the pushing movability action. This resulted to classify the
box as non-movable and re-plan. Given that the environment
did not have any other free path, the robot remained in its
position.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have successfully demonstrated a novel
system integration for the Navigation Among Movable Ob-
stacles (NAMO) problem, utilizing unknown obstacle local-
ization via vision and pushing actions, as well as sim2real
demonstration via the use of the Isaac Sim photorealistic
simulator. The method runs online on the robot during a robot
navigation task, resulting in successful obstacle manipula-
tions and reaching navigation goals. This was demonstrated
in simulation and then applied directly to a real mobile
platform. In future work, we aim to test more complex
scenarios with tighter space constraints and various different
types of actions. Last, we aim at replacing the local path
planning with a reinforcement learning agent that can com-
pute trajectory NAMO tweaks faster.
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