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Abstract— In this article, we propose a deep learning frame-
work that provides a unified approach to the problem of
leg contact detection in humanoid robot walking gaits. Our
formulation accomplishes to accurately and robustly estimate
the contact state probability for each leg (i.e., stable or slip/no
contact). The proposed framework employs solely propriocep-
tive sensing and although it relies on simulated ground-truth
contact data for the classification process, we demonstrate that
it generalizes across varying friction surfaces and different
legged robotic platforms and, at the same time, is readily
transferred from simulation to practice. The framework is
quantitatively and qualitatively assessed in simulation via the
use of ground-truth contact data and is contrasted against state-
of-the-art methods with an ATLAS, a NAO, and a TALOS
humanoid robot. Furthermore, its efficacy is demonstrated in
base estimation with a real TALOS humanoid. To reinforce
further research endeavors, our implementation is offered as
an open-source ROS/Python package, coined Legged Contact
Detection (LCD).

I. INTRODUCTION

Humanoid robot locomotion can be regarded as a sequence
of foot contacts that the humanoid experiences with the
environment. To this end, accurate and robust foot contact
detection entails a vital role in locomotion control [1], [2],
[3], gait planning [4], [5], [6], base state estimation [7],
[8], [9], [10] and Center of Mass (CoM) estimation [11],
[12], [13]. Therefore, to achieve truly agile and dexterous
locomotion, the leg contact status must be accurately esti-
mated. Nevertheless, this topic remains largely unexplored in
humanoid robotics research with some notable exceptions.

Contemporary contact detection approaches can be
broadly categorized into two groups: a) approaches that
directly employ the measured ground reaction wrenches, and
b) approaches that incorporate kinematics and dynamics to
estimate the Ground Reaction Forces (GRFs) in order to infer
the contact status.

Fallon et al. [14] utilized a Schmitt-Trigger method to
classify the measured vertical GRFs from Force/Torque (F/T)
sensors in the feet of an Atlas humanoid robot to multiple
contact states and determine which leg should be used for
state estimation [15]. This method was also adopted in [13]
with the pressure sensors of a NAO humanoid. Bloesch et
al. [16] employed the binary contact sensors in the feet of
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the StarlETH quadruped to detect contact and took advantage
of the support leg kinematics constraints for updating an
Unscented Kalman filter. Rotella et al. [17] employed F/T
and IMU measurements from the feet of a humanoid robot in
clustering with a fuzzy c-means algorithm to independently
estimate the contact probabilities for each one of the six leg
Degrees of Freedom (DoFs). Moreover, the authors used the
obtained contact probabilities in base estimation by adapting
accordingly the kinematic measurement uncertainty.

On the contrary, Ortenzi et al. [18] proposed an approach
to estimate the contact constraints the robot experiences
with the environment based only on joint position measure-
ments. Hwangbo et al. [19] introduced a one-dimensional
probabilistic framework with a Hidden Markov Model that
takes advantage of kinematics, differential kinematics, and
dynamics to estimate the contact state. This approach does
not rely on F/T sensors, but effectively exploits joint po-
sition, velocity, and torque measurements to estimate the
GRF. In [20], the contact status of a quadruped robot is
inferred from the GRFs, by thresholding the robot dynamics.
Recently, Camurri et al. [21] demonstrated a supervised
learning framework that employs logistic regression to es-
timate the contact probabilities for quadruped robots. This
one-dimensional classifier utilized the estimated GRF from
dynamics, joint position, and torque measurements to encode
different GRF thresholds for different type of gaits. Neverthe-
less, to perform the training, the ground-truth base velocity
is needed. Similarly, Lim et al. [22] developed a deep
learning-based contact estimator that uses proprioceptive
sensory data as input and classifies the individual contacts
as a binary state. Despite the fact that the results indicate
high classification accuracy, the framework is coupled with
a specific robot and controller and it is unable to generalize
to different platforms without new ground-truth labeled data.

Most of the aforementioned approaches determine whether
a specific leg experiences contact with the environment or
not. Recent works try to estimate directly the gait-phase
during locomotion. Towards this direction, in [23], a linear
Kalman Filter is utilized to estimate each leg state (swing or
contact) for quadruped robots. The latter employs Gaussian
probabilistic models for the contact forces and the terrain’s
ground height to infer the gait-phase. Although a very high
estimation accuracy is recorded, the scheme relies on prior
knowledge from pre-planned contacts and gait-phases and
thus directly couples the control and estimation processes.
Recently, we proposed an unsupervised learning framework,
coined Gait-phase Estimation Module (GEM) [24], that takes
advantage of linear dimensionality reduction with PCA on
proprioceptive sensing and clustering in the latent space, to



infer the gait-phase probabilities. A high accuracy for all
three gait-phases was demonstrated with a simulated Valkyrie
robot, but only statically stable walking was examined.

A. Contribution

In this article, we propose a deep learning framework
based on proprioception, specifically an F/T and an IMU sen-
sor in each leg, to determine the contact state probabilities,
namely stable or slip/no contact probabilities for dynamic
walking gaits over variable friction surfaces that can further
benefit the legged locomotion problem. Our contribution to
the state-of-the-art regards:

• A unified approach for contact detection. We demon-
strate that a model trained with walking gaits over
a specific friction coefficient, generalizes to a very
large range of frictions. Additionally, the model also
generalizes to different robotic platforms. Although our
model is trained with the ATLAS robot, the same model
provides highly accurate contact estimation in NAO and
TALOS walking gaits.

• A framework that relies solely on proprioceptive sensing
that is readily available in contemporary humanoids.

• A demonstration that, although the model is trained in
simulation with the ground-truth contact states as labels,
it can be readily employed to infer the contact state with
a real TALOS humanoid.

• A framework that has been extensively evaluated against
state-of-the-art approaches in contact estimation and it’s
efficiency is demonstrated both in simulation and real
robot experiments.

• The release of an open-source module implementa-
tion in ROS/Python, named Legged Contact Detection
(LCD) module [25].

Notice that in [17], IMUs in the legs are also considered.
In this case a shortcoming is that 12 fuzzy c-means clustering
models must be individually trained, one for each of the three
translational and rotational DoFs of both legs, to collectively
estimate the leg contact states. Accordingly, in [21], two
supervised classifiers are trained, one for each leg with the
ground-truth base velocities recorded by a motion capture
system as labels. In the gait-phase estimation framework
of [24], the latent dimension must be pre-specified to perform
dimensionality reduction either with PCA or autoencoders.
The latter highly depends on the pace and speed of the gait.

The current article is organized as follows: Section II
presents a physical interpretation to the particular choice of
training data. In Section III the deep learning contact de-
tection framework is presented. Subsequently, the proposed
framework is quantitatively and qualitatively assessed both in
simulation and real-world experiments in Section IV. Finally,
Section V concludes the article and outlines potential future
work.

II. TRAINING DATA ACQUISITION

Training data is an important aspect of machine learning.
Instead of blindly employing all available sensory data in
a training session, we provide a physical interpretation to a

particular choice of features that are directly correlated to
the contact state. In the following, we assume that the robot
is equipped with proprioceptive sensing that is commonly
available in humanoids nowadays, namely, F/T and IMUs
sensors in the legs. The datasets used for LCD training and
testing are released in [25].

A. Contact State in the Centroidal Dynamics
The centroidal dynamics of a humanoid during locomotion

can be described by the Newton-Euler equations:

m(c̈+ g) =
∑
i

f i (1)

mc× (c̈+ g) + L̇ =
∑
i

si × f i + τ i (2)

where c and c̈ are the CoM position and acceleration, L̇
is angular momentum rate around the CoM, f i and τ i are
the Ground Reaction Forces (GRFs) and Torques (GRTs), si
are the contact points, g is the gravity vector, and m is the
robot’s mass.

Subsequently, in order for a leg to maintain contact and
neither slip nor rotate, the friction constraints must apply:√
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where p is the center of pressure and µx,y, µz are the planar
and rotational contact friction coefficients, respectively.

As evident there is a direct correlation of the contact points
and, thus, the contact state with the ground reaction wrenches
and the centroidal dynamics. Although we can measure the
left and right leg contact wrenches lf l,

lτ l and rfr,
rτ r with

F/T sensors in the local leg frames and also compute the
CoM velocity bċ and angular momentum rate bL̇ in the base
frame with kinematics, friction depends on the environment
and prohibits the analytical derivation of the contact state.

B. Contact State in the Leg Kinematics
The contact state is also directly linked to the leg kine-

matics namely, the left and right leg spatial linear and
angular velocities lvl,

lωl and rvr,
rωr. More specifically,

for the left leg to experience a stable contact with the
environment and not slip in the tangential directions, the
following conditions must apply:

lfz
l > 0 (7)

lvxl = 0 (8)
lvyl = 0 (9)
lωz

l = 0 (10)

Furthermore, when the leg is stationary on the ground and
is not breaking the contact by lifting nor rotating, then:

lvzl = 0 (11)
lωx

l = 0 (12)
lωy

l = 0 (13)



Fig. 1: LCD Deep Learning Architecture.

Accordingly, the same conditions apply to the right leg.
In the above, the spatial rotational velocities l,rωl,r can

be directly measured with an IMU attached to the foot links.
On the contrary, the spatial linear velocities l,rvl,r cannot be
measured and must be estimated. To avoid introducing cor-
relations between the base and the contact state estimation,
we employ the leg spatial linear accelerations l,rαl,r, which
can also be measured by the leg IMUs.

Although the spatial linear accelerations carry similar
dynamic information about the leg contact state they fail to
capture the case where the legs are slipping with constant
spatial linear velocity, e.g., when stepping on ice. Neverthe-
less, the latter is not yet a realistic case for modern legged
robots and will not be considered in this study.

III. ROBUST CONTACT ESTIMATION WITH DEEP
LEARNING

To accurately infer the leg’s contact state we devised
a supervised learning framework, termed Legged Contact
Detection (LCD), depicted in Figure 1. The data employed
for the training procedure were the leg F/T measurements,
namely lf l,

lτ l and the leg IMU data, namely lωl,
lαl, as

measured in the local leg frame. A single model is trained
with the left and right leg F/T and IMU data and is used to
infer the contact states for both legs.

A. Preprocessing
For the F/T measurements the following model was con-

sidered:
lf l =

lf̄ l + bf +wf (14)
lτ l =

lτ̄ l + bτ +wτ (15)

where the lf̄ l,
lτ̄ l are the true GRFs and GRTs, bf , bτ

and wf , wτ are the F/T measurement biases and zero-mean
Gaussian noises, respectively.

Similarly, for the IMU measurements the following model
was employed:

lαl =
lᾱl +

lRwg + bα +wα (16)
lωl =

lω̄l + bω +wω (17)

where the lᾱl, lω̄l are the true linear acceleration and angular
velocity, lRw is the rotation from the world to the left leg
frame, g is the gravity vector, bα, bω and wα, wω are the
IMU measurement biases and zero-mean Gaussian noises.
Evidently, the same models apply for the right leg F/T and
IMU measurements.

Initially, the biases for all measurements have been re-
moved, including the gravity constant in the linear accelera-
tion measurements. Next, measurements exceeding 3σ were
identified as outliers and eliminated from the dataset.

All data have been normalized in each dimension with
their maximum value to avoid large scale measurements such
as the vertical GRF lfz

l dominating the learning procedure.
Subsequently, the absolute value was taken since slip is
bidirectional and does not depend on measurement signs.
Moreover, all data have been synchronized and downsam-
pled to 100Hz since the contact state commonly changes
when the robot takes a step which contemporary humanoids
accomplish with a slower rate, e.g., 1− 2Hz.

B. Architecture

The LCD network, illustrated in Figure 1,consists of 2 hid-
den layers with 128 neurons followed by a 30% dropout layer
to prevent overfitting. Subsequently, two more hidden layers
were added with 64 and 128 neurons, respectively, to feed
an output layer of 2 units, one for each contact probability,
namely stable contact or unstable/no contact. For all hidden
layers the ReLU activation was used, while for the output
layer the sigmoid was employed to guarantee that the output
is a valid probability. The overall architecture was determined
experimentally while aiming to maximize the accuracy of the
classifier on data acquired from other robotic platforms than
the one employed for training. Hyperparameter grid search
was performed to optimize the efficiency of the network.
Overall, LCD was trained for 30 epochs, with a batch size
of 16 and the adam optimizer.

Accordingly, we formulate a supervised classification
problem by minimizing the binary cross-entropy loss:

L = − (ysc log(psc) + (1− ysc) log(1− psc)) (18)



(a) Simulated ATLAS experimental setup (b) Simulated NAO experimental setup

(c) Simulated TALOS experimental setup (d) Real TALOS robot

Fig. 2: Experimental setup for variable friction surfaces.

where psc is the stable contact probability, puc = 1 − psc
is the unstable/no contact probability and ysc is the ground
truth stable contact label obtained by evaluating Eq. (3) - (6)
as well as Eq. (8) - (13) in simulation, as also outlined in
the next section.

IV. RESULTS

In the current section, we present quantitative and quali-
tative results that demonstrate the accuracy and efficacy of
the proposed framework both in simulation and real world
experiments. LCD was implemented in ROS/Python and is
publicly available at [25]. A snapshot of the experimental
setup is illustrated in Figure 2. In addition all of our
experiments are presented in high resolution at https:
//youtu.be/csUIadkT7OM.

A. Simulation Results

To conduct a quantitative and qualitative assessment,
we employed an ATLAS and a NAO humanoid robot in
RaiSim [26] –a high-accuracy multi-contact simulator for ar-
ticulated robots– and the TALOS humanoid in Gazebo [27].
Accordingly, to generate walking patterns, we’ve imple-
mented a robot generic omnidirectional walking motion
planning [28] and a real-time gait stabilization module [29],
both based on the Linear Inverted Pendulum (LIPM) dynam-
ics [30], [31]. Subsequently, to realize the desired trajectories
in each humanoid, we’ve also developed a real-time whole
body control module [32] based on stack of tasks at the
velocity level [33]. In our formulation, higher priority was
given to the desired leg trajectories, then to the desired

CoM position and torso orientation, and finally to a standing
posture joint configuration task to maintain postural balance.
Regarding the feedback of the motion planning, real-time
stabilization and whole-body inverse kinematics, the ground-
truth values were employed. The latter modules are also
released as open-source ROS/C++ packages to reinforce
further research endeavors.

Next, we’ve commanded each robot to continuously walk
over multiple surfaces with varying friction coefficients from
0.05 to 1.2, for approximately 10 minutes, to record the
needed dataset. Overall, the above sessions resulted in an
average distribution of the labels as follows: 60% for Stable
Contact (SC) and 40% for Unstable Contact (UC) (30%
for no contact and 10% for slip). The legs’ IMU and F/T
measurements were available at 500Hz for ATLAS and
TALOS and at 100Hz for NAO. In all measurements, i.i.d
Gaussian noise was added to provide realistic noise levels
according to Table I.

Subsequently, the LCD model is trained with a 10 minute

TABLE I: Simulation noise standard deviations.

Continuous Discrete (100Hz)
σα 0.0008m/s2/

√
Hz 0.008m/s2

σω 0.0005rad/s/
√
Hz 0.005rad/s

σbα 0.0001m/s3/
√
Hz 0.001m/s3

σbω 0.0006rad/s2/
√
Hz 0.006rad/s2

σf 0.07N/
√
Hz 0.7N

στ 0.003Nm/
√
Hz 0.03Nm

σbf 0.0001N/s/
√
Hz 0.001N/s

σbτ 0.0001Nm/s
√
Hz 0.001Nm/s



Fig. 3: Thresholding and LCD predictions for SC on ATLAS walking gaits with varying friction coefficient surfaces

omni-directional walking gait via the ATLAS robot and over
a 0.2 friction coefficient surface. This model is then used
to infer the contact state for every walking gait performed
with the ATLAS, NAO, and TALOS robot over variable
friction surfaces. To compute the necessary training labels,
we evaluate Eqs. (3)–(6) and Eqs. (8)–(13) using the ground-
truth values at every discrete time instant. If the latter is true,
the contact label is characterized as SC, otherwise it is a UC.
Note that UC includes the slip and no contact states.

To quantitatively assess the proposed framework in terms
of accuracy, we employ several state-of-the-art contact detec-
tion methods. More specifically, we have implemented a) the
vertical GRF thresholding (T), b) the Schmidt Trigger [14]
(ST), which relies on hysteresis thresholding with a low and
a high vertical GRF threshold, and c) the fuzzy c-means
(FCM) contact detector [8]. The first two are binary contact
classification methods while the third is a contact probability
detector based on leg F/T and IMU data clustering. The
thresholds employed for each robot were finely tuned for
each dataset to yield the best results, while for FCM the
fuzziness parameter was set to 1.2 and a batch size of 20
input samples was used for all robots.

Comparison to Thresholding methods

The quantitative results (Table II) from the comparison be-
tween LCD, T, and ST indicate that LCD outperforms every
thresholding model in identifying the UC state. Although
the difference is between 3-7%, this is rather significant
because slip occurs rarely and for a short period of time
and, thus, the no contact class dominates in size the UC
labels. Figure 3 demonstrates how the vertical force of the
left foot varies during gait and the ground truth labels for SC
(1.0) and UC (0.0). The latter presents two rows whereby

the top row refers to the basic thresholding methods, namely
T and ST, and the bottom row presents our own results.
The depicted gait pattern is extracted from the ATLAS robot
while walking on surfaces with varying friction coefficients.
Each peak represents a step, more specifically the first step
is on terrain with µ = 0.5, where µ stands for the terrain-
foot friction coefficient. Similarly, the second peak regards a
case with µ = 0.051, and the third and forth peaks refer to
µ = 0.1 and µ = 0.5, respectively. Note that the gait phase in
the initial part of the first step (peak) and the final part of the
last step is Double Support. It is interesting to observe that
during the second step, although the robot has transferred
its weight to perform the next step, the foot is slipping and
hence T and ST are misclassifying the corresponding data
points (purple region) since lF z

l is greater than the threshold.
On the contrary, this is not the case with the proposed LCD
framework, which identifies the UC state of the gait. Similar
observations also hold true for the subsequent steps that are
illustrated in the same figure.

Comparison to unsupervised learning

In Figure 4 we demonstrate a qualitative comparison
between unsupervised learning (FCM) and the proposed
model (LCD) on the same gaits. The top graph illustrates the
probability of stable contact (psc) as computed by the FCM
versus the ground truth labels. FCM accurately predicts the
first step and, although it recognises the instability at the
beginning of the second step, it quickly converges to the in-
correct label. On the other hand, the bottom graph illustrates
the predictions of LCD which successfully captures most of

1A value of µ = 0.05 refers to walking on almost ice-like surfaces.



TABLE II: LCD evaluation on variable friction datasets

LCD Simple Threshold Schmidt Trigger
Dataset SC(%) UC(%) SC(%) UC(%) SC(%) UC(%)
ATLAS single friction(15k) 97 96 97 93 96 92
ATLAS mixed frictions(50k) 96 84 95 79 94 81
NAO mixed frictions(15k) 96 80 94 73 89 75
TALOS mixed frictions(50k) 92 70 98 64 99 65

the data samples classified as UC (0.0) but also SC (1.0)
according to the ground truth labels.

LCD with feature reduction

In order to test the robustness of LCD and its transfer-
ability to point feet robotic platforms (such as quadrupeds),
we removed all the F/T measurements from the training
dataset except the vertical force Fz . Next, we trained the
model by using only Fz and IMU measurement. After
training, the model was able to make successful predictions
on test datasets with different but not extremely low friction
coefficients, as shown in Table III.

Fig. 4: Unsupervised learning and LCD predictions on nor-
mal and low friction gaits.

B. Experimental Results: Application to Base Estimation

Finally, we employed LCD to predict the stable con-
tact state probability for an actual TALOS humanoid and
facilitate base state estimation with the State Estimation
Robot Walking (SEROW) framework [13]. The latter fuses
effectively the contact state, kinematics, and the base IMU
measurements to provide estimates for the base position,
velocity and orientation. A vicon motion capture system was
used to provide the ground-truth base pose every 200Hz.
Figure 5 illustrates the 3D-base position error over time,

TABLE III: LCD performance with reduced features

dataset SC(%) UC(%)
ATLAS, µ = 0.5 91 98
ATLAS µ = 0.4 92 99

Fig. 5: 3D-Base position error of the estimated base position
with SEROW from the corresponding ground-truth base
position.

whereby a slight drift is observed in the x and z axes for
this 60s gait. The measured root mean square error was
particularly small, namely 0.0245m, 0.0101m, 0.0123m for
the base position and 0.7058deg, 1.2035deg, and 1.8426deg
for the orientation, validating the employed stable contact
state probabilities.

C. Discussion

We have demonstrated that an LCD model trained on a
single dataset with the ATLAS robot walking over specific
friction surfaces in RaiSim, achieves highly accurate con-
tact detection. Additionally, the model generalizes well to
contact estimation a) over surfaces with variable friction not
previously included in the training dataset, b) with different
robotic platforms scaling from small size light-weight robots
such as NAO to full size heavy robots such as TALOS, and
c) with different simulation platforms namely RaiSim and
Gazebo. Consequently, it is rather straightforward to claim
that the LCD architecture ought to have captured some robust
contact features which are invariant to friction and to robot
characteristics such as weight and height. Subsequently,
we presented that the same architecture provides accurate
contact estimation only with the GRF and the IMU data
as input. The latter implies that this method can be readily
adopted for robots with point feet, such as modern quadruped
robots. These results pave the way for a holistic contact
detection mechanism that is robot and contact agnostic.

V. CONCLUSIONS

In this article we introduced LCD, a deep learning frame-
work that provides a unified solution to contact detection
by accurately and robustly estimating the leg contact state
based solely on proprioceptive sensing. Although the latter
rely on simulated ground-truth contact data for the training
process, LCD generalizes across robotic platforms and can



be readily transferred from simulation to real world setups.
To reinforce further research endeavours we released LCD
as an open-source ROS/Python package [25].

LCD has been experimentally validated in terms of ac-
curacy in simulation and has been compared against state-
of-the-art approaches for contact detection with a simulated
ATLAS, TALOS, and NAO robot. Additionally, its efficacy
has been demonstrated in base estimation with an actual
TALOS humanoid.

In future work, we aim at learning the contact state dynam-
ics and utilize them to improve our state estimation and gait
control schemes. Furthermore, we will investigate possible
applications of the estimated contact state in humanoid visual
SLAM [34].
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