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Abstract— This paper introduces a novel deep learning ap-
proach to semantic segmentation of the shoreline environments
with a high frames-per-second (fps) performance, making the
approach readily applicable to autonomous navigation for
Unmanned Surface Vehicles (USV). The proposed ShorelineNet
is an efficient deep neural network of high performance relying
only on visual input. ShorelineNet uses monocular visual input
to produce accurate shoreline separation and obstacle detection
compared to the state-of-the-art, and achieves this with real-
time performance. Experimental validation on a challenging
multi-modal maritime obstacle detection dataset, the MODD2
dataset, achieves a much faster inference (25fps on an NVIDIA
Tesla K80 and 6fps on a CPU) with respect to the recent state-
of-the-art methods, while keeping the performance equally high
(73.1% F-score). This makes ShorelineNet a robust and effective
model to be used for reliable USV navigation that require real-
time and high-performance semantic segmentation of maritime
environments.

I. INTRODUCTION

Unmanned Surface Vehicles (USV) are intelligent marine
platforms vital in various practical applications, such as
maritime environment monitoring [1] and coastal waters
patrolling [2]. Compared to large-scale manned vessels, the
improved mobility and portability of USVs allow them
to autonomously inspect challenging areas that would be
otherwise difficult to reach. Typical small-scale USVs are
several meters long (under 5 meters for most platforms),
equipped with on-board video cameras as their main per-
ception sensing system, and supported by small computing
units [3].

Safe and efficient autonomous operations are required for
full autonomy of USVs. To achieve this, USVs should be
capable of observing the environment, detecting obstacles,
and navigating around them to avoid collisions in real-time.
In the past, several studies have explored the use of various
sensors for observing the environment, such as marine radar,
LIDAR, and sonar [4]. However, these sensors may have
several disadvantages, such as limited detection accuracy,
impaired capability in detecting submerged obstacles, and
high prices especially for LiDAR sensing. By far, visual
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Fig. 1. The proposed ShorelineNet structure. ShorelineNet takes in images
acquired in various conditions and outputs predicted masks for segmentation
and obstacle detection. A real-time performance of ShorelineNet can be well
achieved on both GPU (25fps) and CPU (6fps).

cameras have shown to be the most effective, information-
dense, and affordable sensory modules for USVs [5].

Vision-based obstacle detection in shoreline scenes poses
several challenges, namely the non-flat water-sky separation
line, large variation in water patterns, and significantly
different scene appearances in varying weather and light-
ing conditions. Traditional camera-based obstacle detection
utilizes background subtraction methods. However, they are
unsuitable for USV settings due to the large scene variation
and high dynamics of marine environments [6]. Stereo re-
construction methods [7] are able to reliably detect objects
that protrude the water surface, but fail to detect obstacles
submerged underwater. In addition, such methods are range-
constrained and are not able to detect visible obstacles
in faraway distances. Structured models, such as semantic
segmentation methods (SSM) [5], have demonstrated accept-
able results with real-time inference. It utilizes a monocular
camera’s image input and a Markov random field to segment
scenes into sky, land, and ocean. However, since only simple
features are extracted from the image, the method’s perfor-
mance is bottlenecked in environments with harsh lighting
conditions, high degree of visual ambiguity (such as haze),
and presence of high pitching and rolling.

There are currently two state-of-the-art approaches to
overcome the shortcomings of traditional algorithms. One
approach is to increase the number of sensors and inputs.
Bovcon et al. [8] proposed an inertial measurement unit



(IMU) assisted semantic segmentation method (ISSM) that
uses a stereo camera and an IMU sensor to achieve a
significant boost in the detection performance (F-score). In
particular, false positive results were significantly reduced
from stereo verification. However, this approach imposes
the necessity to add additional sensors and a calibration
procedure, and doubles the computational time required per
image.

The second approach is to learn richer features using
deep convolutional neural networks, inspired by the recent
developments in deep learning. These deep neural networks
are able to learn rich features and achieve desirable vision-
based semantic segmentation results [9]. Bovcon et al. [10]
proposed a decoder-encoder network and achieved the state-
of-the-art performance on the public marine environment
Multi-modal Marine Obstacle Detection Dataset 2 (MODD2)
dataset [11]. However, a significant drawback of those seg-
mentation networks is the long inference time. For example,
within the network proposed in [10], the adopted backbone
encoder is predominantly ResNet101, which is a relatively
heavy encoder with large number of parameters and long
inference time. Consequently, despite of the improvement in
accuracy, ResNet-based segmentation neural networks also
require high computational time, making them impractical
to be implemented for real-world USV applications.

In this paper, we propose a novel efficient segmentation
network (shown in Fig. 1), named ShorelineNet, to improve
the shortcomings of the aforementioned approaches. Shore-
lineNet is capable of achieving real-time semantic segmen-
tation of shoreline environments, using only visual inputs,
while maintaining high performance. Our main contributions
include: 1) demonstrating that the proposed ShorelineNet is
a new real-time network that produces significantly higher
accuracy compared to model-based real-time methods, and
2) showing that the improvement in speed is achieved with
very little compromises in accuracy by retaining a high
F-score compared to other state-of-the-art neural network
approaches. We validate our proposed ShorelineNet on the
public MODD2 marine environment dataset and demon-
strate that segmentation provided by ShorelineNet can be
performed in real-time with 25fps on a GPU (an NVIDIA
Tesla K80) and 6fps on a single-core CPU, which enables
a real-time post-processing and facilities full autonomy for
USVs.

The rest of the paper is organised as follows. We describe
the model architecture of ShorelineNet and its implementa-
tion in Sec. II. Experimental validations of the ShorelineNet
are carried out in Sec. III together with detailed comparative
results with other state-of-the-art methods. Sec. IV concludes
the paper and provide directions for future work.

II. METHODOLOGY
A. Problem Formulation

ShorelineNet aims to semantically segmenting image per
pixel to three general classes, i.e. sky, obstacles/land, and
water. This segmentation subsequently contributes to accu-
rate shoreline separation and obstacle detection that enables

full autonomous navigation of USVs in complex environ-
ments. The general goal of semantic segmentation is the
minimization of per-pixel difference between the ground
truth mask and the predicted mask. However, within the
context of USVs, this is an inappropriate problem framing, as
inaccuracies of even just a few pixels can lead to false posi-
tive or false negative detection of small obstacles. Extensive
false positive predictions will lead to frequent misdirection
of a USV; whereas a large number of false negatives will
lead to the collision of a USV with obstacles. ShorelineNet
is therefore developed to specifically tackle the problem
of obstacle detection in shoreline scenes, and to overcome
the shortcomings of the traditional semantic segmentation
problem framing.

B. ShorelineNet Architecture

The proposed model adopts a UNet-like architecture with
symmetrical encoder and decoder (shown in Fig. 2a). UNet
is an image segmentation network that is originally designed
for biomedical image segmentation, but has since shown to
be an effective model for many other segmentation tasks [12].
Several desirable characteristics of UNet make it feasible for
a fast and accurate detector of the maritime environment.
First, UNet has a lightweight structure compared to other
main-stream networks, and is therefore associated with low
inference time to output fast predictions. Second, UNet
has a high performance in segmentation tasks, especially
with small numbers of classes. Such property makes UNet
extremely suitable for segmenting the shoreline scene, where
all scenes can be segmented into three classes in a top-
to-bottom order: sky, obstacles/land, and water. Lastly, the
connections between the outputs of the encoder to the de-
coder makes the network capable of retaining deep features,
hence suitable when there are small number of training
samples. This is desirable for the maritime dataset where
the amount of publicly available data is limited. Adopted
from UNet’s architecture, the proposed ShorelineNet is less
likely to overfit on the MaSTr1325 dataset [13], which is
designed specifically for segmentation tasks of small-sized
coastal USVs, but only includes 1325 images.

We constructed ShorelineNet with a contracting encoder
path and an expanding decoder path, shown in Fig. 2a.
The purpose of the encoder is to extract deep features
from the image using convolutional layers. This can produce
rich features and dense spatial information that cannot be
obtained using model-based algorithms, such as SSM [5]
and background subtraction [6]. A suitable CNN would be
the one which extracts the highest quality features with
the fewest number of parameters. We have selected the
MobileNetV2 [14] as the encoder for the ShorelineNet, as we
find it to encompass both of these qualities. When compared
to an equivalent UNet structure using ResNet101 as the
backbone similar to the WaSR, and using the network for
inference on the MaSTr1325 dataset [9] with 224×224 image
inputs, ShorelineNet demonstrates an 8-fold reduction in the
number of parameters, as shown in Table I. This increases the
GPU inference speed by 43 percent and more than doubles



(a) (b)

Fig. 2. (a) Architecture of ShorelineNet adopts a UNet-like structure, the encoder (left, blue) is a pre-trained MobileNetV2 model, and the decoder (right,
orange) is a custom decoder constructed with upsampling blocks symmetrical to the encoder outputs. (b) A detailed schematic of the upsampling block is
shown, the block first scales up the output of the previous upsampling block, and then concatenates with the outputs from the encoder.

the CPU inference time. In addition, it also reduces the
memory space required to store these networks. As we will
show in Sec. III, these benefits are achieved with very little
compromise in performance.

TABLE I
ARCHITECTURE PARAMETERS AND RUNTIME COMPARISON

ResNet101+Unet ShorelineNet (ours)

Encoder Parameters 42.66M 2.26M
Decoder Parameters 4.23M 4.23M
Total Parameters 46.29M 6.50M
GPU Runtime (fps) 18.0 25.7
CPU Runtime (fps) 2.2 5.8

The decoder is composed of four upsampling blocks
and a deconvolution layer with spatial symmetry to the
encoder outputs, shown in Fig. 2b. Each upsampling block
is composed with a deconvolution layer followed by a batch
normalization layer, a dropout layer, and a ReLu activation
layer. The output of the activation layer is then concatenated
along the last channel with the corresponding output from the
encoder. Following the advice in [12], we connect the outputs
of each block in MobileNetV2 to the decoder, which allows
the rich features extracted from each block of the encoder
to be transferred to the decoder without extra computation;
whereas without these connections, some features would be
lost in the pooling layers of the network. It should be noted
that such interactive connections make the network both
more robust and efficient. The input and outputs of each
upsampling block is shown in Fig. 2a.

The final output of the network is 224×224×3 in size, and
we reduce it to a single channel for each pixel by selecting
the class that the network assigns the highest probability

for. It is important to note that dropout layers are crucial
components in our network design (shown in Fig. 2b) as
they reduce overfitting by forcing the network to utilize on a
wider set of neurons rather than relying on a few important
ones. Experiments (Sec. III) showed that dropout layers
significantly reduce the number of false positive detections
in form of noise around the shoreline edge.

C. Implementation

A main challenge in training on a small dataset is the
prevention of overfitting. We train the network on the
MaSTr1325 dataset [13], which contains 1325 semantically
segmented images of shoreline scenes. The results are post
processed and evaluated on the MODD2 dataset [8], which is
the most challenging marine dataset publicly available, and
allows us to compare to the state-of-the-art methods. Heavy
image augmentation is performed in parallel to training
in order to prevent overfitting. Our adopted augmentations
include randomly flipping the images horizontally, rotating
by up to 15 degrees, scaling by 60 to 90 percent, and color
changes in hue, saturation, brightness, and contrast.

Our experiments have shown that traditional cross entropy
function is inadequate for the task of obstacle detection as
it does not produce high penalty for noisy false positive
predictions near the edge of the water or between the
border of two segments. In addition, the shoreline scene is
usually skewed in class distribution where there are more
sky and water pixels than obstacle pixels (Fig. 3). This
limitation effectively generated high number of false positive
predictions near the shoreline and noisy predictions around
obstacles. To accommodate this limitation and increase the
reliability of the ShorelineNet in detecting obstacles near
water and obstacle edges, a new loss function based on the



Fig. 3. The data distribution of the MaSTr1325 dataset. [9]

focal cross entropy loss function has been adopted in our
model training as:

FL(pt) = −αt(1− pt)γ log(pt), (1)

where pt ∈ [0, 1] describes the probability that the model
assigns to a specific pixel, γ is a modulating parameter, and
α is a balancing parameter.

Focal loss extends the range at which low loss is assigned
to easy examples, and penalizes the model for wrong pre-
dictions with high confidence scores. This effectively forces
the model to distinguish the pixel differences between water
and object, and minimizes false predictions of obstacles in
water areas. We use γ = 2, αt = 0.25 in practice, adopted
from [15]. By putting a higher penalty on falsely predicted
pixels, the new focal loss helps the model to predict the water
edge more accurately and also reduces the number of false
positive predictions.

The encoder is a MobileNetV2 model pretrained on Ima-
geNet. The model architecture is implemented and all train-
ing is done in Tensorflow using the Keras API. The decoder
weights in each of the upsampling blocks are initialized
using the Glorot normal initializer, which has shown to be
especially effective for gradient descent of deconvolution
layers. The network is trained using Google Colab’s NVIDIA
Tesla K80 GPU.

III. EXPERIMENTAL VALIDATION

A. Dataset and Baseline

There is a limited number of publicly available marine-
time datasets that are fully semantically segmented for ev-
ery pixel. The Marine Semantic Segmentation Dataset [9]
(MaSTr1325) is a recent high-quality dataset designed specif-
ically for training neural networks for semantic segmenta-
tion and has produced promising results with state-of-the-
art neural networks. We use the MaSTr1325 to train our
network, with heavy image augmentation described in Sec. II
to increase variance in the dataset.

The trained network is then evaluated on the Multi-
modal Marine Obstacle Detection Dataset (MODD2), which
consists of 28 continuous video sequences with labelled
shoreline and bounding boxes around obstacles. However,
since this dataset is not annotated with a per-pixel mask, post

TABLE II
OBSTACLE THRESHOLD COMPARISON

Architecture µedge TP FP FN F-score

ShorelineNet 15.3 2711 1505 490 73.1
ShorelineNet (low threshold) 15.3 4597 2446 1720 68.8

processing is required to transform the annotation masks into
the shoreline and the bounding boxes that indicate where the
network predicted obstacles.

The post processing procedures follow the methodology
used in [10] for a consistency in comparison. From the pixel-
wise masks outputted by the network, the largest connected
component within the water region is treated as the navi-
gable water surface, and the upper boundary of the region
corresponds to the shoreline. The obstacles are obtained by
marking bounding boxes around regions that are predicted
as obstacles within the water region. The performance is
calculated with the F-score (also known as F1 [16], [17])
defined as follows:

F1 = 2× precision+ recall

precision× recall
, (2)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(3)

where TP are the true positives, FP the false positives, and
FN the false negatives. Note that in order to speed up the
inference time, the input for the ShorelineNet (224 × 224
pixels) is smaller than that of the original image (1278×958
pixels). Such reduction in image resolution imposes a bigger
challenge on the task, as some small obstacles may only
appear in a few pixels in size. For fair comparison, an object
size threshold has been used in proportion to our input space
by removing a small set of annotations, such that no obstacle
will appear smaller than 2×2 pixels in size(the same obstacle
size used in [9] and [10]). Note that we also show in Table II
that a high F-score can also be achieved by ShorelineNet
without increasing this threshold with the details discussed
in following sub-sections.

The experiments were undertaken in three steps: 1) we
set our baseline network as the ShorelineNet architecture
without the dropout layer and train the baseline model using
sparse cross entropy loss, 2) we then train a network with
dropout layers and with focal loss, respectively, to observe
what kind of improvements each provides, and 3) we train
a network by applying both dropout layers and utilizing
focal loss to achieve the best results. Despite differences in
accuracy, all of these networks have the same inference speed
and network size.

The results from ShorelineNet are then compared to the
state-of-the-art methods, such as ISSM [8] and WaSR [10],
where we show that the high speed performance of Shore-
lineNet does not compromise its accuracy.

B. Experiment results and discussions

The experiments results are shown in Table III. For all our
experiments, fully converged results are presented to reveal



Fig. 4. Qualitative inspection of the results from each experiments. In column one, we see that the baseline network outputs highly fragmented segmentation
and an unacceptable amount of false positive predictions. In column two and three, where focal loss and dropout layers are applied respectively, we see a
decrease of the false positive predictions present in these images. This indicates that focal loss and dropout layers have made the network become more
robust against reflections and glitters. Lastly, the fourth column shows the best result of ShorelineNet with very few false positive predictions and smoother
water edges.

TABLE III
EXPERIMENTS WITH DROPOUT AND FOCAL LOSS

Architecture µedge TP FP FN F-score

Baseline 15.2 2826 3849 358 57.3
Dropout 15.8 2439 1392 735 69.5
Focal loss 17.3 2480 2039 704 64.4
Dropout + Focal loss 15.3 2711 1505 490 73.1

the best performance. In addition, since both dropout layers
and focal loss increase the time it takes for the model to
converge, the number of epochs trained for each experiment
is different.

Our experiments revealed that dropout layers are ex-
tremely effective in reducing the number of false positive
results, increasing the F-score from 57 percent to 69 percent
compared to the baseline (shown in Table III). Specifically,
when implemented with dropout layers, the model reduced
false positive predictions by three-fold due to the capability
of dropout layers to effectively enable the network to utilize
all the neurons. As a consequence of this, the implementation
of dropout layers makes ShorelineNet not lenient on a small
set of connections that achieve high accuracy in the training
set. On the other side, the network learns a larger set of deep
features which is more likely to produce generalized results



TABLE IV
COMPARISON TO STATE-OF-THE-ART MODEL-BASED METHODS

Architecture µedge F-score fps (CPU) fps (GPU)

ISSM [5] 52.8 34.7 29 NA
ISMM (stereo) [8] 52.8 49.5 11 NA
ShorelineNet (ours) 15.3 73.1 6 25

applicable to data beyond the training set.
In Table III, we also show that focal loss achieves large

improvement when compared to the standard per-pixel cross
entropy loss. Similar to dropout layers, focal loss signifi-
cantly reduces the number of false positive predictions and
increased F-score by 7 percent from the baseline. This is
achieved by forcing the network to prioritise feature learning
of difficult obstacles, as well as falsely predicted obstacles
from glitter and reflections.

The best result is achieved when both dropout layers and
focal loss are used. We observe an 16 percent increase in F-
score from the baseline from the last row in Table III, with a
very low number of false positive examples. In comparison
to the baseline network, the selected network is much more
prone to overfitting, indicated by the significant reduction in
false positive values while maintaining similar true positive
and false negative scores. We note that the reduction in
true positive generally represent temporal inconsistencies in
detection of small and faraway obstacles. Overall, such a
configuration achieves the most robust and reliable perfor-
mance whilst retaining a real-time performance.

Qualitative inspection of the results is illustrated in Fig. 4.
We observe that without focal loss or dropout layers, the
baseline model produces very fragmented segmentation of
the image. Specifically, there are a high number of false pos-
itive predictions near the shoreline boundary, object bound-
aries, and reflections and glitters. Focal loss and dropout
layers illustrate similar qualitative improvements when im-
plemented. We can see from the first and second row in
Fig. 4 that there is a reduction in false positive predictions
due to water reflections when focal loss and dropout layers
are applied. In both of these experiments, the network is
much more robust compared to the baseline and is less likely
to predict shadows and reflections as objects. The best result
is achieved when both focal loss and dropout layers are
applied. We can see in the last column in Fig. 4 that the
network predicts smoother water edges with very little noises
presented. In addition, we also observed that ShorelineNet is
able to reliably detect even extremely small obstacles, which
can only be achieved when both focal loss and dropout layers
are applied, as shown in last row of Fig. 4.

Recall that in Table II, we show that even with lower
threshold for obstacle size, ShorelineNet still achieves a
high 68.8 percent F-score. More specifically, we lower the
obstacle size threshold to the same threshold used in WaSR
[10], which is performed on an input space with higher
resolution. Even though ShorelineNet should be severely
disadvantaged in such a setting as some obstacles are less
than 2×2 pixels in the input space, the network still achieves

TABLE V
COMPARISON TO STATE-OF-THE-ART NEURAL NETWORK METHODS

Architecture µedge TP FP FN F-score fps
(GPU)

WaSR [10] 9.2 6166 679 151 93.7 10
WaSR (no WS) [10] 12.3 4149 710 2168 74.2 10
PSPNet [18] 13.8 5886 4359 431 71.7 17
DLv2s [19] 14.1 5834 227 483 75.2 1.6
ShorelineNet (ours) 15.3 2711 1505 490 73.1 25

a high performance nonetheless. This well demonstrates that
ShorelineNet is extremely robust, and is able to pick up an
additional 1800 true positive detection while outputting an
high F-score still comparable to state-of-the-arts results.

C. Comparative study with state-of-the-art model-based
methods

In Table IV, we compare the results of ShorelineNet
with ISSM and stereo ISSM [8], as these methods are
the state-of-the-art real-time efficient models for detecting
obstacles in shoreline scenes. We show that ShorelineNet
achieves a much higher F-score when compared to both
ISSM and stereo ISSM, as well as a much higher water
edge accuracy µedge (15.3 for ShorelineNet and 52.8 for
ISSM). Whilst ShorelineNet’s CPU fps (6) is lower, its GPU
fps (25) has the same performance to that of the ISSM
(29fps on CPU), and is much higher than ISSM with stereo
verification (11fps on CPU). Furthermore, both ISSM and
stereo ISSM rely on additional sensors such as as IMU
and stereo camera, whilst ShorelineNet operates only from
monocular input images making ShorelineNet much more
efficient at converting sensor inputs into accurate detection.

D. Comparative study with the state-of-the-art neural net-
work methods

In Table V, we present our comparative analysis with the
state-of-the-art segmentation methods, including the WaSR
network [10], the WaSR network without water sepera-
tion loss (WaSR without WS) [10], the PSPNet [18] and
the DLv2s [19]. The following results can be obtained.
First, when compared with PSPNet, WaSR without WS and
DLv2s [19], ShorelineNet achieves a similar accuracy but
with a superior advantage in speed. For example, a 25fps
can be achieved on a GPU using ShorelineNet compared to
1.62fps, 10fps and 17fps achieved by DLv2s, WaSR without
WS and PSPNet, respectively. In particular, ShorelineNet’s
inference time is computed on a NVIDIA Tesla K80 GPU
whilst other networks’ inference times are computed on a
NVIDIA GTX 1080 Ti GPU with values taken from [9],
[10]. Note that Tesla K80 is a slightly slower GPU for neural
network inferences, which further proves the high inference
efficiency achieved by ShorelineNet.

When compared with the WaSR network, even though
ShorelineNet provides a compromised performance in de-
tection accuracy with a lower F-score and water edge accu-
racy, an evident improvement in speed is achieved, where
ShorelineNet is able to operate with a 2.5 times higher



speed making a real-time operation possible. In addition,
we argue that a compromised performance on the standard
evaluation metric used in [8], [9], [10] does not indicate
inferiority of the ShorelineNet for the following reasons.
First, as ShorelineNet’s input (224 × 224 pixels) is lower
than that of WaSR (384 × 512 pixels), when the network’s
output is scaled up using bilinear interpolation in the post
processing stage, the value of µedge inevitably increases
as the water edge inaccuracy is amplified. However, this
does not interfere with the quality of obstacle detection as
ShorelineNet still achieves a high F-score. Second, most of
the false positive predictions of ShorelineNet are due to
noises near the water edge. This often does not pose an
immediate threat or misdirection to the control system of
a USV, as the land segment can be accurately predicted by
ShorelineNet and would be avoided in the first place. Third,
the current standard evaluation metric does not count the
detection of obstacles that overlap the shoreline as a true
positive. If these obstacles are accounted for, the number of
true positive predictions would increase by approximately
3-fold. Lastly, the ability for ShorelineNet to achieve high
accuracy at a significant increase in speed means that it is a
more efficient model, and makes it a practical network and
can be readily integrated into the autonomous systems of
USVs.

IV. CONCLUSIONS AND FUTURE WORK

We presented ShorelineNet, an efficient deep neural net-
work that accurately detects obstacles in the shoreline scene
with real-time performance. The performance of Shore-
lineNet has been well validated in dataset taken in practical
maritime environments. The comparison with the state-of-
the-art segmentation networks has demonstrated that Shore-
lineNet is able to achieve a fast inference capability while
retaining a relatively high accuracy in detecting maritime
obstacles. To improve the performance of ShorelineNet, our
future work will be focusing on reducing the decoder size to
further increase the runtime speed, as well as utilizing custom
loss functions to further reduce false positive detection and
improve accuracy.
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