
Autonomous Real Time Architecture
for High Performance Mobile Robots

Antonios E. Gkikakis1, Dimitrios Kanoulas2, and Roy Featherstone3

Abstract— Highly-dynamic robotic systems, such as hop-
ping robots, require light, computationally and energy effi-
cient on-board units for control. This paper presents such a
computational unit together with a software architecture for
achieving high-performance behaviors, such as balancing and
hopping. These demanding behaviors require accurate dynamic
calculations, high-bandwidth control, and fast real-time state
estimation. The proposed system consists of cheap and off-the-
shelf electronics that are detailed in this paper. The effectiveness
of the presented approach is validated on a balancing machine
called Tippy, which is able to achieve fast tracking of command
signals while balancing. The experimental results of this paper
demonstrate that reliable real-time software for demanding
high-performance robotic applications, which require fast con-
trol loops and intensive calculations, can be achieved with light,
low cost and energy efficient components, which can empower
the widespread use and experimentation of high-performance
robots worldwide.

I. INTRODUCTION

Highly-dynamic robots have been the topic of research
since the early 80s with the introduction of Raibert’s hopping
machines [1]. Some of the main reasons that robots must
be fast are so that they can efficiently assist humans, and
because swiftness is essential for adapting to rapid changes
in their state of motion or their environment. An example
of a highly dynamic behavior is legged locomotion, which
requires fast and accurate system responses. Particularly,
a fraction of a second is enough for the system to lose
its balance and fall. Agile robots, such as Spot of Boston
Dynamics [2], can reject disturbances, such as being pushed,
and maintain their balance. Fast robots have the potential to
cope with many undesired scenarios, and hence can be more
robust and reliable. However, building such systems is not a
trivial problem to solve, and has many pitfalls.

To achieve high speed, a robotic system requires accurate
dynamic calculations, fast control loops, and real-time state
estimation. Furthermore, agile motions may result in high-
risk activity that might damage the robot or its environment.
Thus, appropriate strategies and modules must be devised
to ensure a reliable and safe operation. The aforementioned
problems impose a tough obstacle for the computational
system and the software that implements high-performance

1Antonios E. Gkikakis is with Dept. of Advanced Robotics, Istituto
Italiano di Technologia, Genoa, Italy and Dibris, University of Genoa, Italy
antonios.gkikakis@iit.it

2Dimitrios Kanoulas is with Department of Computer Science, Uni-
versity College London, Gower Street, WC1E 6BT, London, UK
d.kanoulas@ucl.ac.uk

3Roy Featherstone is with Dept. of Advanced Robotics, Istituto Italiano
di Technologia, Genoa, Italy roy.featherstone@iit.it

Fig. 1. Balancing machine named Tippy, that uses the presented compu-
tational unit and software architecture. Although capable of other motions,
the machine is configured to behave as a planar reaction-wheel pendulum.

behaviors. Fast robotic arms already exist in confined in-
dustrial environments [3]; however, they come with a high
cost and are restricted to controlled and certain environments.
An open problem in bringing more dynamically operating
robots into the real-world environments for everyday life
applications is the need for cheap, reliable, and energy
efficient solutions.

This paper focuses on a computational system and its
software architecture to achieve high-performance motions,
such as hopping and balancing. The contribution of this
paper is to demonstrate a technological advancement, which
shows that energy-efficient computational units for reliable
and fast robots can be built at a low cost. Mobile robots have
recently started to enter the market, such as Spot of Boston
Dynamics [2]. It is evident that the requirements for these
robots will increase to start matching the needs of new more
demanding applications. To be more efficient, robots will also
be required to complete tasks faster, and hence the need for
developing cheap and reliable systems for controlling nimble
robots will arise. Affordable and energy-efficient solutions
can facilitate the widespread application and experimentation
of robotics.

In this work, all the software responsible for the robot’s
behavior is implemented on-board, and hence the system is
autonomous, compact (is small and efficiently uses its limited
resources), robust, reliable (has appropriate fault detection
modules), and has hard real-time implementations for dy-
namics, control, and state-estimation, which are essential for
achieving demanding athletic behaviors.

The presented system is relatively cheap and uses a
Raspberry Pi Zero W (RPI0) and a Texas Instruments (TI)



development kit equipped with a real-time microprocessor.
At the time this paper is written, the overall cost of the
presented unit is less than 50 euros, and the framework
implements a complete control system, which includes wire-
less communication between a user and the robot, high-
bandwidth logging, high frequency sensor-sampling, state
estimation, control loops, on-board real-time dynamics com-
putations, and fault detection. The effectiveness of the system
is demonstrated on a custom-built balancing machine named
Tippy [4] (see Fig. 1), in the task of balancing and command
tracking, an ability that inherently requires fast responses.

The paper is organized as follows. Firstly, the computa-
tional unit is presented (Sec. III), followed by the control
hierarchy that is implemented in the system (Sec. IV). Next,
the software architecture is detailed (Sec. V), and results
of the system when applied on a real high-performance
monopedal robot are presented (Sec. VI). Finally, future
directions are discussed (Sec. VII) along with the conclusions
(Sec. VIII).

II. BACKGROUND

Balancing and dynamic walking are examples of high
performance behaviors. Particularly, to perform hops, a robot
might be required to reach a state of imbalance, where it
has only a few fractions of a second to build the required
momentum to propel itself upwards; because otherwise it
will fall. The time when the robot can change its state of
momentum is limited to when it is in contact with the ground
(also called the stance phase). In the simulations of Gkikakis
and Featherstone [5], where realistic simulations of various
hopping behaviors of a high-performance monopod robot
called Skippy are presented, the stance phase is less than
0.25 s. Similarly, in the work of Yim et al. [6], the stance
phase of their miniature hopping robot Salto does not last
longer than 0.3 s. During this short time frame, the robot
must skillfully control the magnitude and the direction of the
ground force to achieve the desired lift-off conditions. Both
of these robots are relatively light; Salto weights a bit more
than 0.1 kg, and Skippy is currently being designed to have
a mass of 3 kg. The former achieves its athletic behaviors
with an on-board real time microcontroller, that runs a 1 KHz
servo for motor control and a balance controller at 500Hz,
but depends on an external computer for trajectory command
generation, and the latter will be equipped with the system
presented in this paper.

Cheap and lightweight electronics such as Raspberry Pi
(RPI) have been recently popularized in control of mobile-
robots [7]–[12]; however, RPI lacks the variety of hard-
ware accelerators that are present in real-time microcon-
trollers, which can allow a much higher performance to
be achieved since many time-costly tasks (communication,
reading/writing from memory) can be handled by hardware,
and hence the processor can spend almost all of its resources
on computations.

In the work of Grimminger et. al [13] a 2.2 kg jumping
quadruped robot also uses a TI evaluation board to perform

Fig. 2. System overview (left); control hierarchy (right).

high-level control at 1KHz and at 10KHz for motor con-
trol; however, the high level controller runs on a separate
computational unit outside of the robot. Katz et. al [14]
designed the mini-cheetah, a relatively small (has a mass
9 kg) and agile quadruped capable of athletic behaviors such
as a back-flip. The robot has torque control loops running up
to 4.5 KHz, control and state estimation at 1 KHz, and uses
a more expensive computer unit than the one presented in
this paper.

Larger robots are also capable of high-performance feats.
HyQ has demonstrated high-performance balancing in the
work of Gonzalez et. al [15], where the quadruped balances
on a line using only two feet. The robot uses a two-layer
control scheme running a balancing controller [16] at 250Hz
and a low-level controller at 1 KHz; which are frequencies
lower than the aforementioned robots. The robot is also
equipped with significantly more expensive computational
units than the one presented in this paper.

III. SYSTEM OVERVIEW

In this section, we describe the introduced system, whose
overview appears in Fig. 2 (left). The user connects to the
system via WiFi or Bluetooth and communicates with the
robot through a custom-made user interface (UI) imple-
mented in C language. The computational unit consists of
a Raspberry Pi Zero W [17] (RPI0) and the LAUNCHXL-
F28377S LaunchPad development kit, that is equipped with a
dual core TI TMS320F28377S [18] real-time microprocessor
(TI MCU). RPI0 was selected due to its compact size, low
price, computational power, and its large community; the TI
MCU was chosen based on the number of desired hardware
accelerators, its affordable price, its power efficiency, and
real-time control capabilities. The former is responsible for
the following tasks:

1) providing an interface for the user,
2) storing log data,
3) trajectory generation and transmission, and



4) transmitting metadata to the microcontroller, such as
controller gain values;

the latter is responsible for all the real-time computations,
sensor sampling and motor control needs of the robot. It
is essential for these computations to be performed in hard
real-time to guarantee that the system will meet time require-
ments. RPI0 has a wireless interface and runs a standard
Linux-based operating system named Raspberry Pi OS [17],
through which the user connects to the robot via WiFi or
Bluetooth and runs a script that initiates the communication
with the real-time microcontroller.

The RPI0 is equipped with an SD card to allow the storage
of several hours of logs. Furthermore, its 1GHz clock allows
it to perform high-level computations, such as trajectory
planning, that we plan to implement in a future version of the
system. (Currently only logging is performed and the CPU
is IDLE for most of the time.) The results presented in [4]
use precomputed trajectories.

The TI MCU has single-precision floating-point arith-
metic, and has two independent cores that both run in parallel
at 200MHz. Details about the real-time implementation are
presented over the next two sections.

IV. CONTROL HIERARCHY

Control is divided into three layers (see Fig. 2). In the
first layer a trajectory is defined, that can be given in real-
time or be predetermined. The trajectory consists of joint
positions, velocities, and accelerations. Having high-order
derivatives of the reference signal can improve tracking
ability of the balance controller [16], but add additional
complexity and increase the communication overhead. The
signal is transmitted to the TI MCU via high-speed SPI
communication.

The second and third layers are implemented in the real-
time microcontroller. The trajectory is passed to the second
layer, which has a C implementation of the planar balancing
controller described in Featherstone [16]. The output of the
balancing controller is then fed to the third layer, which
implements a servo for controlling the motors. The balancing
controller runs up to 1KHz and the servo can reach frequen-
cies up to 25KHz. In the second layer real-time dynamics are
calculated, and the control output is desired accelerations and
joint torques, which are fed to the third layer that implements
a PID controller for tracking these signals.

The second CPU (CPU 2) of the TI MCU is designed
for executing tasks with low latency, and hence is a suitable
choice for implementing time-critical tasks, such as low-level
controllers and state estimation. Heavy-duty computations,
such as dynamics and calculating the balancing controller
output, are performed in CPU 1.

V. SOFTWARE ARCHITECTURE

The overview of the software architecture is presented in
Fig. 3, together with the frequency value (or a frequency
value range) of each of the presented events inscribed in the
blocks. Depending on the various sensors used, the micro-
controller can achieve different sensor sampling frequencies.

Fig. 3. Architecture of the system. Blocks represent tasks, and each
column contains the tasks which the corresponding processor handles.
For synchronous tasks their frequency appears on top of the block. The
system consists of three processors: (1) the RPI0, (2) CPU 1 of the real-
time microcontroller, where communication and heavy duty computations
are performed, and (3) the second CPU of the microcontroller that runs
independently and in parallel with CPU 1.

The RPI0 uses asynchronous communication (UART) to
transmit user commands to the TI MCU, and the latter uses
the same protocol for informing the RPI0 about the status of
an ongoing experiment or any fault that appears (see Sec. V-
A). Larger volumes of data are transmitted via the faster SPI
synchronous communication; these data are logs, trajectories
or metadata (see Sec. VI).

The software in the real-time microcontroller is interrupt-
driven. A main interrupt service routine (ISR) is called at a
rate between 10 and 25KHz (depending on the requirements)
in CPU 1 to perform the tasks mentioned in Figure 3 at
the desired frequency. For example, if the servo control
runs at 25 KHz, so does the ISR, and the balance controller
computation happens every twenty-fifth call of the ISR. The
ISR is also responsible for invoking the tasks of CPU 2 by
simply changing a register value. Then, the tasks of CPU 2
happen in parallel and independently of CPU 1, and when the
time comes CPU 1 checks if they terminated and retrieves
the computed values via a shared memory pool.

A. Fault Detection

A crucial part of any real-time system is fault detection.
Fast motions are difficult to stop, and for that reason the
system must be designed not only to recover from but also
to prevent undesired scenarios. The system must always meet
time constraints, be certain of the proper functionality of all
of its components as well as the available resources. Fast
robots need keen perception of their environments, and that



means that all of their sensors must work as expected. These
measures depend on the application, and for the system
presented in this paper are:

1) watchdog timer to check if the system operates (it
hasn’t hung);

2) status check of sensors (e.g., header values and CRC);
3) communications must be completed within a given

time frame and periodicity (i.e., sampling sensors);
4) motor saturation limits, for preventing the system to

go out of control;
5) joint limits, for preventing the system from reaching

undesired states;
6) power supply check (i.e., notify the user if the state of

charge of the battery is below a certain threshold);
7) user-connection check, because all computations hap-

pen on-board the system does not depend on the user
to operate, hence when the robot loses the connection
with the user it returns to a home-balancing configu-
ration until connection is re-established.

These measures are a necessity for increasing the relia-
bility and the safety of the system. In addition, they help
prevent catastrophic scenarios, where the robot might harm
itself or its environment, and must be performed at frequent
intervals. We consider measures 1–3 to be hard-faults (in
measures 1–2 hard real-time assumptions are violated, and
in measure 3 sensing is not properly functioning), because
they may lead to unpredictable scenarios, and in case they
are violated the system stops its operation.

B. Real-time Dynamics and Control

Fast robots require accurate dynamics and fast controllers.
Dynamic computations are usually costly, with the cost
being increased depending on the robot’s number of joints,
existence of kinematic loops etc. The software architecture
of our system is designed to optimally use its limited re-
sources and to spend minimal time in time-costly tasks such
as communication with the use of hardware accelerators,
allowing the system to reach its true potential in terms of
control bandwidth. Dynamic computations are performed in
hard real-time on the TI microprocessor, which contains
optimized C implementations for planar versions of the
following algorithms:

1) Recursive Newton Euler Algorithm (RNEA) [19];
2) Composite Rigid Body Algorithm (CRBA) [19]; and
3) the balance controller proposed in Featherstone [16].
The aforementioned algorithms are executed at a rate of

1 KHz on the TI MCU CPU 1 (see right Figure 2). The output
of the balancing controller is passed to the servo which runs
at a faster rate than the former, and is responsible for making
the motor track the command signals.
Algorithmic Optimization—the efficiency of these algo-
rithms has been furtherly improved by exploiting Branch-
Induced Sparsity. This phenomenon can result from branches
in the kinematic tree of the robot, which lead to patterns of
zeros appearing in the joint-space inertia matrix. Sparsity
is exploited by using modified algorithms that iterate over

only the nonzero elements. Exploiting sparsity can in some
cases lead in substantial computational cost reductions in
typical algorithms such as the CRBA from O(n2) to O(nd)
[20], which can allow efficient dynamic calculations even in
complicated robots.
Memory Optimization—to maximize the usage of the
limited available memory of the microcontroller a signal
compression strategy is implemented. This strategy uses a
simple cubic interpolation scheme to compress/decompress
a command signal. In this way lengthy control signals can
be stored in a compact way in the microcontroller’s limited
memory. In the experiments presented in [4] a command
signal of 10 seconds (for 1 KHz 10,000 points are required)
has been compressed to only 162 points (61.2 compression
ratio), which are then used to reconstruct the original signal
in real-time.

C. Sensing and State Estimation

For the robot presented in [4], state estimation consists
of position and velocity estimation from joint encoders.
For joint angle positions we use two iC-Haus’ iC-MU150
18-bit [21] magnetic absolute encoders, and for the motor
position we use Maxon’s ENX 16 12-bit incremental en-
coder [22]. The absolute encoders are used by the balancing
controller to measure the position of the crossbar, and the
vertical direction (required for balancing) from a spherical
joint at the base of the robot. The incremental encoder is
used to measure the motor position and is used by the servo.

For velocity estimation we use a second-order Butterworth
filter with a cut-off frequency of 500 rad/s for the absolute
encoders and 3000 rad/s for the incremental encoder, which
all run at CPU 2 (see Fig. 3). To sample these sensors, hard-
ware accelerators are used, which are called the Enhanced
Quadrature Encoder Pulse (eQEP) modules [18], where
reading of the incremental encoders is handled completely
by hardware that stores the values in registers, and hence
does not add any communication overhead.

D. Communication and Logging

Logging of data is performed at 1KHz. The MCU has
limited memory (164KB of RAM) so the logs must be
transmitted quickly and reliably in frequent time intervals.
For this reason a software FIFO queue is implemented for
storing the logs.

To utilize all of the computational power of the microcon-
troller, and not waste time on communication and copying of
data, the software uses Direct-Memory-Access (DMA), and
hardware FIFO queues for transmitting/receiving data.

DMA copies data between memory locations while fol-
lowing specific rules that dictate when it is allowed to
perform the operation (e.g., copy the data only when the
queue has available space). We use DMA to copy data
into/from the FIFO of the SPI channel. This operation is
completely handled by hardware, and the software only needs
to define the memory locations to copy from/to, and when
the process starts. In this way, the software can focus all
of its resources on computations. We implement a low-level



Fig. 4. Example of high-performance behavior demonstrated on Tippy, a balancing machine. The robot is connected via an unactuated spherical joint to
the base; the robot balances by rotating its crossbar. Left: moments before external disturbance; middle: during a disturbance the robot needs to react in a
very short amount time to prevent falling; right: the robot rejects the disturbance and continues operation.

communication protocol using SPI for transmitting logs from
the microcontroller to the RPI0 at a rate of 1 KHz, which
consist of 96 32-bit float values of interest.

VI. RESULTS

The presented system is used on a 5-DoF balancing
machine called Tippy, and experimental results are presented
in Driessen et. al [4]. Tippy uses the balancing algorithm of
Featherstone [16] to balance and track a command signal in
2 D. The robot is a full 3 D balancing machine, but in [4]
it is configured as a 2 DoF planar reaction wheel pendulum
(RWP). In this configuration a brushed Maxon DCX 22S
24V motor [22] is actuated for balancing and following a
command signal, by rotating the crossbar (see Fig. 1). The
robot is powered by a LiPo battery with a nominal voltage
of 30V.

In terms of power consumption the computational unit
spends less than 2 W, and uses only ∼ 10% of its com-
putational power in CPU 1, and even less than that in CPU
2, meaning that most of the time it is inactive. This shows
that much heavier computations can be performed, such as
3 D dynamics, or that the same system could be used in more
complicated robots. A simple and cheap microcontroller such
as the one used in this system [18] has enough computational
power and modules to control at least 3 DC motors.

In the task of balancing only a few hundred milliseconds
are enough for the robot to lose its balance and fall [16]. In
the video [23] of the experimental results presented in [4],
it can be seen that the proposed system can follow fast pre-
calculated command signals, such as ramps, sinusoids and
step position commands with its crossbar, while maintaining
its balance, and can also respond to external disturbances
without falling (see Fig. 4). To achieve such a behavior the
balancing controller runs at 1KHz and the servo at 5KHz.
Experimenting with servo control cycles below 5KHz shows
a reduction in the tracking and balancing response of our
system, indicating that high control bandwidth is important
for obtaining high-performance in this given task. For servo
control, we have found that a simple velocity proportional
controller works well in practice. The reference velocity to

the servo is obtained by integrating the joint acceleration out-
put of the balance controller. Our system has the potential to
sample the absolute encoders at 15KHz, and the incremental
encoders at 25KHz, but we were limited by noise in the
signals.

An additional utility that was implemented and facilitated
the experimentation process, is soft real-time gain tuning
(block ‘metadata’ in Fig. 3). By using the UI, the user is able
to modify values such as the controller gains and dynamic pa-
rameters of the model; a utility that is present in many robotic
computational systems and could also be implemented in the
low-cost computational unit that is presented in this paper.

Finally, the presented system has been tested to oper-
ate completely autonomously and balance for more than
40minutes proving its reliability. During this period, a user
was occasionally disturbing the system (see Fig. 4) and
continuous logging of all the data was performed.

VII. FUTURE WORK

The LAUNCHXL-F28377S LaunchPad development kit
is an evaluation and development tool, that does not provide
access to all of the pins of the microcontroller. Fig. 5 shows
a computational unit stack, that consists of an RPI0 and
a custom made PCB for the TI TMS320F28377S micro-
processor. This unit will be the brain of Skippy, which is
presented in [5], that will allow the autonomous operation
of the high-performance legged robot. Its overall size is
4.4 × 6.5 × 2 cm, it weighs only 33 g, and is responsible
for all the computational needs of the robot.

VIII. CONCLUSION

This paper presents an off-the-shelf computational unit
and its software architecture that is aimed for the control
of high-performance robots. The aim of this paper is to
demonstrate that high performance can be achieved with low
cost, and energy efficient electronic computational units and
with existing off-the-shelf microcontrollers.

The computational unit consists of a Raspberry Pi Zero W
and a Texas Instrument real-time microcontroller. Despite the
low price of the unit (costs less than 50 euros) it is able to



Fig. 5. Computational unit stack next to a two-euro coin for size
comparison. The unit consists of a Raspberry Pi Zero W and a custom-
made PCB for the TI TMS320F28377S microprocessor.

achieve reliable and high bandwidth control. Specifically, the
system has been tested to reach servo cycles up to 25 KHz;
perform real-time planar dynamics computations and achieve
control loops at 1 KHz, all on the real-time microprocessor.
Furthermore, sensor sampling, state estimation, fault detec-
tion and high-bandwidth logging is implemented. The unit is
untethered and can be accessed via WiFi or Bluetooth mak-
ing it a completely autonomous system where all important
computations happen in real-time and on board. Additional
utilities to assist experimentation were implemented such as
real-time gain tuning of parameters during operation.

The unit was used to implement a high-performance
balancing and tracking behavior on a 2 D simplified version
of a 5 DoF under-actuated balancing robot.

The proposed approach utilizes the available technology
to its maximum potential with a thorough software architec-
ture. Specifically, the proposed architecture utilizes hardware
accelerators, task parallelism, a signal compression scheme,
scheduling strategies, and algorithmic optimization of dy-
namics algorithms. The system was optimized to efficiently
use its resources (memory, computational power, energy
consumption) and we envision that it can be used in energy-
efficient and high-performance robots with higher degrees of
freedom. The selected microcontroller can easily be replaced
with its newer versions, that have more functionalities and
higher computational power, and in addition, multiple mi-
crocontrollers can be stacked together. Finally, we will use
the unit in a successor robot named Skippy with 9 DoF and
two actuators, that will also be capable of high-performance
hopping, a behavior which also requires very fast responses.

The results of this work demonstrate that autonomous,
reliable, efficient and fast robots can be built with cheap
electronics and carefully designed software that efficiently
utilizes the available resources. The presented system ar-

chitecture can be used as a seed for the design of more
complicated systems, that are energy-efficient and have low
cost electronics, with the aim to empower the widespread
use of robotics in developing countries and contribute to
unleashing global robotics-related opportunities.

ACKNOWLEDGMENT

Special thanks to Phil E. Hudson, Bajwa Roodra Pratap
Singh, and Juan David Gamba Camacho for their contribu-
tions in the system’s development. This work was partially
supported by the Italian Workers’ Compensation Authority
(INAIL).

REFERENCES

[1] M. H. Raibert, Legged Robots that Balance. MIT press, 1986.
[2] Boston Dynamics, “Spot,” 2021. https://www.bostondynamics.com/spot,

accessed Jun. 2021.
[3] H. A. Almurib, H. F. Al-Qrimli, and N. Kumar, “A Review of Appli-

cation Industrial Robotic Design,” in 9th International Conference on
ICT and Knowledge Engineering, pp. 105–112, 2012.

[4] J. J. M. Driessen, A. E. Gkikakis, R. Featherstone, and B. R. P.
Singh, “Experimental Demonstration of High-Performance Robotic
Balancing,” in IEEE ICRA, pp. 9459–9465, 2019.

[5] A. E. Gkikakis and R. Featherstone, “Realistic Mechanism and Be-
haviour Co-design of a One Legged Hopping Robot,” in 2021 IEE Int.
Conf. on Computer, Control and Robotics (ICCCR), pp. 42–49, 2021.

[6] J. K. Yim, B. R. P. Singh, E. K. Wang, R. Featherstone, and R. S.
Fearing, “Precision robotic leaping and landing using stance-phase
balance,” IEEE RA-L, vol. 5, no. 2, pp. 3422–3429, 2020.

[7] S. C. Gomez, M. Vona, and D. Kanoulas, “A Three-Toe Biped Foot
with Hall-Effect Sensing,” in IEEE/RSJ IROS, pp. 360–365, 2015.

[8] A. U. Bokade and V. R. Ratnaparkhe, “Video Surveillance Robot
Control using Smartphone and Raspberry Pi,” in Int. Conf. on Com-
munication and Signal Processing (ICCSP), pp. 2094–2097, 2016.

[9] M. Güleçi and M. Orhun, “Android based WI-FI controlled robot using
Raspberry Pi,” in UBMK, pp. 978–982, 2017.

[10] G. O. E. Abdalla and T. Veeramanikandasamy, “Implementation of spy
robot for a surveillance system using internet protocol of raspberry pi,”
in 2nd IEEE RTEICT, pp. 86–89, 2017.

[11] S. Bisi, L. De Luca, B. Shrestha, Z. Yang, and V. Gandhi, “Devel-
opment of an emg-controlled mobile robot,” Robotics, vol. 7, no. 3,
p. 36, 2018.

[12] S.-E. Oltean, “Mobile robot platform with arduino uno and raspberry
pi for autonomous navigation,” Procedia Manufacturing, vol. 32,
pp. 572–577, 2019.

[13] F. Grimminger, A. Meduri, et al., “An Open Torque-Controlled
Modular Robot Architecture for Legged Locomotion Research,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3650–3657, 2020.

[14] B. Katz, J. Di Carlo, and S. Kim, “Mini Cheetah: A Platform for
Pushing the Limits of Dynamic Quadruped Control,” in 2019 ICRA,
pp. 6295–6301, IEEE, 2019.

[15] C. Gonzalez, V. Barasuol, M. Frigerio, R. Featherstone, D. G. Cald-
well, and C. Semini, “Line walking and balancing for legged robots
with point feet,” arXiv preprint arXiv:2007.01087, 2020.

[16] R. Featherstone, “A simple model of balancing in the plane and
a simple preview balance controller,” The International Journal of
Robotics Research, vol. 36, no. 13-14, pp. 1489–1507, 2017.

[17] Raspberry, “Raspberry Pi Zero W,” 2021. https://www.raspberrypi.org,
accessed Jun. 2021.

[18] Texas Instruments, “TMS320F28377S,” 2021. https://www.ti.com/,
accessed Jun. 2021.

[19] R. Featherstone, Rigid body dynamics algorithms. New York: Springer,
2008.

[20] R. Featherstone, “Efficient factorization of the joint-space inertia
matrix for branched kinematic trees,” The International Journal of
Robotics Research, vol. 24, no. 6, pp. 487–500, 2005.

[21] iC-Haus, “iC-MU150,” 2021. https://www.ichaus.de/ic-mu150, ac-
cessed Jun. 2021.

[22] Maxon Group, “DCX32L 24V,” 2021. https://www.maxongroup.com/,
accessed Jun. 2021.

[23] Roy Featherstone, “Tippy RWP Balancing video,” 2021.
http://royfeatherstone.org/skippy/index.html, accessed Jun. 2021.


