
Bi-Manual Articulated Robot Teleoperation
using an External RGB-D Range Sensor

Emily-Jane Rolley-Parnell1, Dimitrios Kanoulas2, Arturo Laurenzi2, Brian Delhaisse2,
Leonel Rozo2, Darwin G. Caldwell2, Nikos G. Tsagarakis2

Abstract— In this paper, we present an implementation of a
bi-manual teleoperation system, controlled by a human through
three-dimensional (3D) skeleton extraction. The input data
is given from a cheap RGB-D range sensor, such as the
ASUS Xtion PRO. To achieve this, we have implemented a 3D
version of the impressive OpenPose package, which was recently
developed. The first stage of our method contains the execution
of the OpenPose Convolutional Neural Network (CNN), using
a sequence of RGB images as input. The extracted human
skeleton pose localisation in two-dimensions (2D) is followed
by the mapping of the extracted joint location estimations into
their 3D pose in the camera frame. The output of this process
is then used as input to drive the end-pose of the robotic hands
relative to the human hand movements, through a whole-body
inverse kinematics process in the Cartesian space. Finally, we
implement the method as a ROS wrapper package and we test
it on the centaur-like CENTAURO robot. Our demonstrated
task is of a box and lever manipulation in real-time, as a result
of a human task demonstration.

I. INTRODUCTION

Throughout the past few decades, robots with limbs have
started to emerge from labs and into the real world. Their
role in completing tasks that may be harmful or difficult for
humans, makes them important for the future of humanity.
Unfortunately, their autonomy, which could be the key-
aspect in completing these tasks, is still under development;
especially in cases where the environment is unknown and
uncertain. For this reason, there is great potential in the
development of semi-autonomous ways to control and plan
robot motions with the aid of humans; particularly by explor-
ing the action application necessary for completing various
tasks. One of the possible control methods is teleoperation, in
which a human is controlling directly either the joints/torques
of the robot or it’s end-effectors. In this work, we are
interested in tasks that include manipulation of objects by
humanoid robots [1], controlling their end-effectors through
whole-body motions [2].

The state-of-the-art in manual robot teleoperation is per-
petually moving forward, closer to more reliable and ro-
bust methods of control. Whether for on-site control or
telepresence, industrial or human facing, the number of
reliable robotic systems, articulated systems in particular, is

1University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA,
United Kingdom. erolleyp@gmail.com

2Humanoid and Human-Centered Mechatronics Department,
Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163,
Genova, Italy. {Dimitrios.Kanoulas, Arturo.Laurenzi,
Brian.Delhaisse, Leonel.Rozo, Darwin.Caldwell,
Nikos.Tsagarakis}@iit.it

increasing. Thus it is necessary to focus on designing real-
time control methods that are intuitive and comprehensive,
especially in the case of humanoid robots.

More specifically, we face advances in popularity for
applications of robots controlled manually to perform tasks
such as construction, assisted assembly, or human-robot in-
teraction. Yet in each of these situations, the on-site physical
presence of a human may be hazardous. While teleoperation
would be an invaluable tool for controlling robots that
perform dangerous tasks, the current state of teleoperation
is particularly costly, or may require a long and arduous
calibration process; for instance, using a body suit of IMU
sensors [3], an exoskeleton [4], or a specific array of motion-
capture cameras [5] to generate a 3D model of the operating
human.

In this paper we focus on providing a method that uses
a cheap external RGB-D sensor (ASUS Xtion PRO) to
control a complex articulated robot for realistic manipulation
tasks. Our intention is to provide a three-dimensional (3D)
visual system that can mimic human actions closely, by
tracking human hands and controlling the robot’s corre-
sponding end-effectors. In particular, the implementation
presented in this paper uses the OpenPose algorithm [6]—
an impressive system that was recently introduced and is
based on deep learning, which is able to detect in real-
time (8− 10Hz) human joint poses, using 2D images from
an RGB camera. We use this system as input to transform
the poses in 3D, using the depth information of our range
sensor. The 3D human joint coordinates that are acquired
from the system are given, after filtering, as references
to control the end-effectors of the humanoid robot. These
references are processed by a Cartesian Interface that we
have implemented, which controls the whole-body of the
robot in the Cartesian space, maintaining balancing through
the real-time communication middleware XBotCore [7] and
the Stack-of-Task (SoT) package OpenSoT [8] that is used on
our robot to maintain the robot’s balance, while driving bi-
manual trajectory plans for manipulation. The implemented
method was selected specifically for its cost effectiveness
and accessibility, due to the cheap RGB-D cameras that are
easily accessible nowadays. An overview of our system is
visualised in Fig. 1.

The paper is organised as follows. First, we review the
related work, followed by the implemented system overview,
including the sensing, data processing, the hand pose tracking
in 3D, and the robot trajectory planning control. Then, we
present a set of demonstrations on our articulated robot



Fig. 1: System Overview.

CENTAURO in simulation and real-world, and finally we
conclude with some future work.

A. Related Work

Teleoperation is a well studied field in robotics [9] and
over the last decade it has started developing also for
humanoid robots [10], [11]. As mentioned before, several
systems use high accuracy tracking methods, such as mo-
tion capture cameras, markers or suits [12], [13], [14], or
exoskeletons [15] to control humanoid robots from human
demonstrations. There is also a variety of works that teleop-
erate humanoids through a GUI [16], [17], [18] or joystick-
like tools [19], [20]. In this paper however, we are focused on
cheaper methods of human mimicking-based teleoperation,
using range cameras. This is a challenging problem due
to various reasons, such as inaccurate or uncertain input
data and occlusions of the human-body parts. Thus, few
works have used visual-driven methods on real humanoid
robots. In [21], a mini-humanoid robot is controlled using
an RGB-D sensor, without providing any real-world testing
on the robotic platform. In [22], a classic approach of using
the skeletal tracking system NiTE to map human joints on
mini-humanoids has been studied. In the direction of mini-
humanoids, the same concept of teleoperation has been tried
on a NAO robot [23], using the second version of Kinect.
Most of these works were tried on mini-humanoids for
tracking and imitating human movements. In this work, we
intend to provide an integrated system that works on a full-
size humanoid robot and can achieve bi-manual manipulation
tasks, such as pushing and grasping. In that direction, the
half-size humanoid robot iCub [24] used partially the Kinect
sensor in combination with an Oculus Rift and a SensorGlove
system to drive simple toy grasping movements on the robot.

Human-pose estimation, based on visual sensors is also an
area that has been extensively studied, mainly in computer
vision [25]. In this work, we focus on RGB-D data as input
to our algorithm for human joint or pose estimation. As
mentioned above, we use the impressive OpenPose deep
learning based system [6] to extract 2D poses from the RGB
sensor and then we map to the registered 3D space using the
corresponding depth image, as we will describe in the next
section. Recently, in [26] 2D pose estimates predict 3D joint
positions with relatively low error, using a deep feed-forward
network. In [27] the depth image is used to assign joint
positions within the human hand with a residual network.
However, this is done only related to human hands, and not
the entire body. Detecting poses of multiple people present

is achieved in [28] by using bottom-up proposals for body
parts. Even though the system performs well, it does not
outperform the 2017 OpenPose network. Before the release
of OpenPose, promising results were reached by human
action recognition networks [29] for skeleton localization and
convolution pose machines [30] for pose estimation based on
image features learning and image-dependent spatial models.
Last but not least, in [31] articulated human detection and de-
formable part model templates are used to recognize human
limbs. OpenPose outperforms most of these methods and will
be used in this work for 2D human joints localization, using
RGB data.

II. SYSTEM OVERVIEW

In this section, we describe in detail the stages of the total
integrated system as it is visualised in Fig. 1, that is used
to turn RGB-D human pose data to end-effector poses that
control a humanoid robot for bi-manual tasks in the whole-
body Cartesian space.

A. RGB-D Sensing

Fig. 2: An RGB input image with the localised 2D human
joint poses (OpenPose), and the corresponding depth image
and the coloured organised point-cloud.

The source of input data plays an important role for our
algorithm. The most common and reliable human body-parts
detection or localisation methods, such as OpenPose [6],
rely on RGB data. In addition, the corresponding registered
depth or pointcloud data are required for the 2D-to-3D pose
mapping from the human to the robot. Between different
types of sensors [32], we decided to use an RGB-D structured
light camera sensor (ASUS Xtion PRO), which is cheap,
but reliable enough and works at a frame rate of 30Hz. It’s
depth resolution is 640× 480, while the RGB camera can
reach the value of 1280×1024 in a lower frame rate. In our
experimental setup, we keep both depth and RGB resolution
to 640×480 (acquired as grid-organised, with the non-valid
depth pixel values be set to NaNs) working in 30Hz, so that



Fig. 3: The OpenPose architecture, with two-branch multi-
stage Convolutional Neural Network. The first branch pre-
dicts confidence maps Sn, and the second predicts Part
Affinity Fields Ln. After each stage, the predictions from
the two branches and the image features, are concatenated
for the next stage. The input data is RGB images, and the
outputs are keypoint markers that display the human joint
poses (numbered from 0 to 17; we use only the upper body
parts).

we also have a one-to-one correspondence between depth and
colour data, while keeping the performance of the OpenPose
neural network computationally efficient. Keeping the data
organised is important to access simultaneously the colour
and depth values for each pixel of the input RGB-D data.
A visualisation of the range sensing system (RGB, depth,
and coloured point cloud data) is found in Fig. 2. One can
notice that due to calibration errors between the colour and
depth sensors on the camera, there is a mismatch between
some colour and depth pixels around depth discontinuities
in the real world. This may cause errors when mapping
2D to 3D positions and will be handled by using real-time
points nearest neighbourhoods of organised pointclouds, for
the human joint localisation and mapping, instead of a single
pose pixel.

B. Extracting 2D Human Positions with OpenPose

OpenPose [6] (Fig. 3) is a feed-forward deep neural
network trained on the CMU Panoptic Dataset [33] with
65 human sequences (5.5 hours) and 1.5 million two-
dimensional corresponding skeletons. The method is able
to efficiently detect 2D positions of multiple people within
an RGB image in real-time (8− 10Hz). This is done by
bodypart detection and association, using Part Affinity Fields
and Confidence Maps. Each of these make OpenPose an
innovative network with state-of-the-art success rate. The
bodypart detection takes place in a sequential style, perform-
ing bottom-up prediction by using learned spatial context.

The extracted information is subsequently used to create the
starting structure for the human skeleton in the current frame.
Each body part is enumerated accordingly, as it is visualised
in Fig. 3. We use this method for the robust tracking of
both body and hands parts of humans in 2D. The method
is reliable in preventing occlusions and misidentification by
proximity, making it an invaluable tool for accurate pose
estimation.

C. Mapping 3D Human Positions

The original OpenPose network outputs 2D positions of
human joints in the RGB image. To be able to use these
to control the robot end-effectors, it is required to map
these positions in 3D. For this purpose we wrote a Robotic
Operating System (ROS) wrapper package, that transforms
the 2D output keypoint coordinates to 3D positions. Since
the associated point cloud is also organised, one can directly
extract the corresponding point (X ,Y ,Z) in the 3D Cartesian
space for each 2D pixel (u,v) in the colour image. Fig. 2
visualises this process.

There may be two important issues with this direct map-
ping. First, there is a case that a pixel may have unregistered
(NaN) depth value in the corresponding associate point
cloud. To handle this, we use the nearest neighbourhood
pixels and average their values, assuming that the central
pixel of the human 2D joint position, is mapped in the correct
registered depth pixel from the sensor itself. In this way, we
avoid having a lot of invalid RGB-D pixels and we make our
mapping more reliable to inaccurate depth errors. Secondly,
when there are occlusions OpenPose sets the location of the
human part in occlusion to NaN. In this case, we also do
not map this body part to any 3D corresponding position.
We then handle it’s absence when controlling the robot, as
we will see below.

D. Robotic Hand 6-DoF Pose Control

In order to make use of the 3D position information
provided by the preceding system, for controlling the robotic
hands (end-effectors), the 6 Degree-of-Freedom (DoF) need
to be generated for each extracted human hand position. In
particular, each extracted X ,Y,Z position in the 3D camera
frame needs to be represented as a pose in the robot
world frame. We handle separately the position (Cartesian
coordinates represented by X ,Y,Z) and orientation (rotation
represented by a quaternion qw,qx,qy,qz), as explained in the
following subsections.

1) Robotic Hand Position: To control the hand end-
effectors of the bi-manual robot, we must provide a Cartesian
position of each wrist relative to the human world frame.
Throughout the process of implementation, three different
methods were attempted to provide these Cartesian positions.
The first method gave wrist positions relative to the previous
image frame. While this method was easy to implement, it
was prone to drifting and losing the true location of the wrists
relative to the human operator. The second method provided
the coordinates relative to the hip joints of the human and
mapped this appropriately to the humanoid robot. However,



Fig. 4: Left: the labels of the hand keypoints 1− 20, as
assigned by OpenPose. Middle: the points 0, 1, 2, 5, 9,
13, and 17 are used to create a series of planar triangles to
calculate the Ẑ-axis of the hand-frame. Right: the calculated
hand-frame.

this required a calibration sequence in order to address the
difference in size between the human and the robot, and to
scale the displacement in limb from human to robot. The
disadvantage of this method is that as the position of the
hands was given relative to the position of the hips, the robot
functionality of changing height was removed, and thus a
robot could not change elevation to reach down and pick up
an object. Last, we have implemented a simple but robust
method, which we finally used for our system. In the third
method the reference point is the initial point of the hands
when the tracking system runs. In this way, the movement
of the robot, as measured in the real world, is the same as
the difference between the frames that moved in the robot
frame. This method is simple yet effective in maintaining
reasonable accuracy and preventing drift of coordinates.

To remove unneeded system complexity and confusion,
we consider and filter the OpenPose output data in such a
way that only one person is tracked at a time. Another layer
of filtering is added with the intent of removing any frame
that is unsuccessful in identifying the location of the wrist
joints, or is outlying, so that the physical robot’s wrist jumps
(i.e., fast movements from one point to an other) between
reference points cannot be so big as to be hazardous for the
robot, thus smoothing the output.

2) Robotic Hand Orientation: The OpenPose method also
returns the hand joints as long as they are visible. The
orientation of the robotic hand can be found by creating three
hand-frame axes, determined by keypoints recognised on the
hand of the human, as seen in Fig. 4. Our initial task is to
calculate a 3×3 rotation matrix:

M =

X̂x Ŷx Ẑx

X̂y Ŷy Ẑy

X̂z Ŷz Ẑz

 (1)

where X̂ , Ŷ , and Ẑ are each unit vectors of the hand-frame
to be calculated. Their subscripts are the the individual x,
y and z components of each unit vector. The following
demonstrates how we calculate each one.

We let Ẑ be the surface normal of the planes formed by 4
different triangles between palm keypoints. The four normal

vectors that are formed from each triangle are given by:

~K` =
−−→
PiPj×

−−→
PiPk (2)

where ~K`, ` ∈ {1,2,3,4} denotes the four normals extracted
from each triangle, and Pi, Pj, and Pk are the 3D hand
keypoints that form the triangles. We use the triangles that
correspond to the (Pi,Pj,Pk) point tuples: (1,17,5), (1,17,9),
(0,13,5), and (0,9,2), as visualised in Fig. 4. The cross
product is denoted by ×. To calculate the final Ẑ normal
vector, we average over the four ~K` vectors:

Ẑ =
1
4

4

∑
`=1

~K`. (3)

Notice, that the Ẑ vector needs to be normalised to give a unit
vector for the hand frame. Averaging over four triangles helps
to avoid issues when hand keypoints may be misidentified.

The X̂ vector is calculated as the the connecting vector
from the centre of the palm towards the fingers. This is
calculated by connecting the 0-labeled 3D keypoint (Po) on
the hand and the the mean Mp, of the keypoints labelled as
Pi ∈ {17,13,9,5} that are in the beginning of each finger:

Mp =
1
4

4

∑
i=1

Pi X̂ =
−−−→
PoMp. (4)

Finally, the Ŷ vector is given by the cross product of the
normalised Ẑ and X̂ .

Ŷ = Ẑ× X̂ X̂ = Ŷ × Ẑ. (5)

The recalculation of X̂ is due to the fact that Eq. 4 does not
give the axis perpendicular to the Ẑ one. We let the negative
vectors X̂ , Ŷ , and Ẑ to form the final rotation matrix M.
The rotation matrix can be easily converted into a quaternion
qw,qx,qy,qz, as used by our Cartesian Interface module. We
used the pyquaternion library in Python to convert from
rotation matrices to quaternions.

3) Cartesian Interface on the CENTAURO Robot: The
robot that we use in this work is the CENTAURO [34].
The 42-DoF robot is loosely designed on the structure of
a centaur and has 4 wheeled legs and two manipulator arms
with 7-DoF each. It’s purpose is to have a design that is
capable of conquering rough terrain that is challenging to
bipedal robots, while leaving two bi-manual manipulators
available for obstacle removal and tools.

CENTAURO is controlled using the hard real-time mid-
dleware XBotCore [7]. To control the robot’s end effectors
in the Cartesian space, given hand goal reference poses,
a Cartesian Interface module1 has been developed on the
top of the XBotCore. These use the OpenSoT [8] kinematic
solver to update the joints accordingly. OpenSoT is a library
dedicated to hierarchical whole-body robot control. This is
done subject to constraints, such as joint limits, joint veloc-
ities, balancing, or Cartesian constraints. In this way we can
control the robot end-effectors according to the calculated
and mapped 3D human hand poses in real-time. Along with

1github.com/ADVRHumanoids/CartesianInterface



linear interpolation applied to the rotations independently, the
Cartesian Interface applies smoothing and path interpolation
for both hand end-effectors.

III. ROBOT DEMONSTRATIONS

In this section, we present all the experimental results of
the total system on the CENTAURO robot, including three
different real-world manipulation tasks through teleoperation
and one simulated movement task. Videos of the experimen-
tal results can be found under our webpage:
https://sites.google.com/view/telepose

A. Runtime and Disparity Measurements

We first measure the runtime speed of our system and
then we present the disparity movement of the robot hand
compared to the human hand.

1) Runtime Speed: We measured the runtime speed of our
network at many stages. Our available computer is equiped
with two NVIDIA Titan Xp GPUs and the frequency of
messages is shown in Table I.

Frequency of Message Published
Stage OpenNI2 OP OPToROS Pt2Xbot
ROS Msg I R PCL2 keypts r hand r arm r robot
Freq (Hz) 29.82 29.98 8.07 6.65 6.75 7.13

TABLE I: A summary of the frequency at which the data
messages are published from ROS. The Cartesian Interface
node receives messages at a rate of approximately 7.13Hz.

The frequency output of the RGB-D sensor’s colour im-
age and point cloud is approximately 30Hz. This drops to
8.07Hz, when tracking both human body and hands, match-
ing the OpenPose benchmark. OPToROS is an executable
that republishes only the wrist and hand keypoint messages
needed for our system. The speed of publishing drops here,
but the final speed is 7.13Hz, which is still high enough
speed to provide smooth robot movements.

2) Disparity in Movement: While the mapping of human
to robot is intended to be at 1:1 ratio, there may be slight
errors in tracking. To test this, we sampled a number of
movements in a horizontal direction by 0.5m. From a small
sample we found that if the movement is repeated, the
variance in X , Y and Z coordinates is small, i.e., 0.001m,
0.0001m, and 0.0002m, respectively (0.001m Euclidean dis-
tance variance). The average Euclidian distance error was
calculated to be approximately 0.06m.

B. Task Control

In order to demonstrate the capabilities of our system,
three manipulation tasks on the real robot and one on the
simulated robot were designed for using the robotic hands.
The goal is to mimic a human teleoperator through an
external ASUS Xtion PRO sensor that is set in front of her.
Below, we give the summary of each task, for which the
wheels/feet of CENTAURO are fixed in place. Notice that in
the first three tasks the hand orientation is fixed to show the
positioning capabilities, while for the fourth task we allow
also hand orientation movements.

Fig. 5: Task 1: demonstrating a box push from one stack to
another, for the purpose of being transported by a worker.

Task 1 - Box Push In the experiment illustrated in Fig. 5, a
pile of boxes is arranged in front of the robot CENTAURO.
A human worker waits nearby to transport a trolley of boxes
from one location to another. To move the top box efficiently
from one stack to the worker’s stack, a simple push from the
right hand is required. While only one hand is manipulating,
the other hand, being controlled by the demonstrator moves
in a way as to maintain balance of the robot and allow a
bigger range of moves for the other hand, thus implementing
bi-manual control.

Fig. 6: Task 2: the initial and final positions of a lever being
moved. The lever is rotated 90 degrees counter-clockwise.

Task 2 - Lever Move: In Fig. 6, a rotational bar lever
is situated in front of the robot. Instead of this task being
performed by the human, this is easily carried out by our
robot. The robot, following the movement of the human
operator, lifts the bar in an counter-clockwise direction
approximately 90 degrees.

Task 3 - Box Lift: This task requires that a worker may
access a box that is in the middle of a stack of other boxes. To
offer assistance, the robot CENTAURO carefully lifts the top
box to reveal the middle box. In this lifting action, individual
control of each hand allows an end-effector to be positioned
on either side of the top box. As the manipulators move



Fig. 7: Task 3: two stages of a box lift task. In the lifting
stage, the box is held in the air so that the worker can reach
for the box in between. Last, the robot is placing the box
back on the pile, on top of the lower box.

together, pressure is applied to the box. Whole-body control
is exemplified in this movement as a change in height of
the legs and body is used to raise the box. The whole-body
control is a feature of the Cartesian Interface module and
OpenSoT that allows a much greater range of height and
width when referring to an area of manipulability.

Task 4 - Orientation Example: In order to demonstrate
the ability of hand orientation, Task 4 is a performance of
range on only one wrist. It can be seen in the image that the
palm of the operator is aligned with the direction of the end
effector on CENTAURO. The axes of the hand effector are
orientated in this fashion so that when using the flat paddle
manipulator hand, like in Tasks 1-3, the orientation of the
palm may match the orientation of the paddle.

1) Analysis: In the experimental tasks described above,
small jumps may be observed. These are caused by a possible
number of reasons. Occasionally, the OpenPose network may
misidentify the true location of a joint; if the joint is correctly
identified, there is no guarantee that the depth cloud has an
available depth for that pixel location; or an occlusion of the
joint returns an inaccurate depth as it reads the closest depth
rather than the true position. In order to prevent these jumps
from being problematic to operation, we apply a filtering that
limits the Euclidean distance of robot hand movement to be
a maximum of a threshold (10cm has been used throughout
the experiments): if the distance between positions in the
frame at time t and at t +1 is greater than the threshold, the
movement is ignored.

The method we use to track position becomes challenging
to implement when measuring the rotation of the hands.
Many orientations create occlusions, as such the orientation
cannot be predicted with as much accuracy. We attempted
to solve this problem with projected path of movement, and
this reduces some of the jumps, along with the simulation
movement being smoothed by the Cartesian Interface.

Fig. 8: A visualisation of the comparison between the angle
of the human hand and the robot end effector on the
simulated CENTAURO robot.

2) Reach Differences: Due to the human proportions
being different from those of CENTAURO, the maximum
reach of the arms is different. This difference signifies that
even if the arms of the human are fully extended, this
is not necessarily true on the robot. At the beginning of
testing, the experiments were run on the robot COMAN.
The differences in reach were more obvious as its size was
closer to an average adult human. However to circumvent
this scale issue, we implemented the method found in [35].
In order to map from the given keypoints of the wrists to
the robot, a sequence of calibration frames must be taken.
These frames were then used to calculate the required scales
in each of the directional axes. First position measurements
are taken from the OpenPose network output with arms down
in a neutral position; then with arms straight towards the
camera; and finally in a ”T” position with the arms straight
out to either side. This method was useful for our initial
attempts at controlling COMAN, as scaling of movements
was required, but was unnecessary and time consuming for
the robot CENTAURO inside the system that was described
in this paper.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that our system
implementation and integration of an RGB-D sensor, a pose
recognition network, and an Inverse Kinematic system, is
effective in controlling a bi-manual robot, through human
visual teleoperation. We demonstrated the method on a real
robot (CENTAURO) to complete various bi-manual tasks.

We envision this system to be used for simple and quick
control of humanoid robots. For instance in recording demon-
stration training data of arm movements that can be later
used for reinforcement learning. This data may be collected
in an easy manner rather than having to manually manipu-
late potentially heavy and unwieldy robot arms. Moreover,
we plan to use the developed system with other types of
sensors, such as stereo cameras, that can work also under
sun light. Another opportunity for improvement would be
to develop further on the hands; incorporating not only
orientation, but also tracking whether the hand is open or
closed. A particularly useful tool to be used with grippers



that are frequently affixed to bi-manual robots. These are
both interesting avenues for future work.

ACKNOWLEDGMENT
This work is supported by the CENTAURO (grant agree-

ments no 644839) and CogIMon (grant agreements no
644727) EU projects. The two Titan Xp GPUs used for
this research were donated by the NVIDIA Corporation. The
authors would also like to thank Enrico Mingo Hoffman,
Luca Muratore, and Giuseppe Rigano for their help with the
OpenSoT and XBotCore packages on the robot.

REFERENCES

[1] D. Kanoulas, J. Lee, D. G. Caldwell, and N. G. Tsagarakis, “Center-of-
Mass-Based Grasp Pose Adaptation Using 3D Range and Force/Torque
Sensing,” International Journal of Humanoid Robotics (IJHR), p.
1850013, 2018.

[2] M. A. Goodrich, J. W. Crandall, and E. Barakova, “Teleoperation and
Beyond for Assistive Humanoid Robots,” Reviews of Human Factors
and Ergonomics, vol. 9, no. 1, pp. 175–226, 2013.

[3] N. Miller, O. C. Jenkins, M. Kallmann, and M. J. Mataric, “Motion
Capture from Inertial Sensing for Untethered Humanoid Teleopera-
tion,” in IEEE/RAS International Conference on Humanoid Robots
(Humanoids), vol. 2, 2004, pp. 547–565.

[4] I. Sarakoglou, A. Brygo, D. Mazzanti, N. G. Hernandez, D. G.
Caldwell, and N. G. Tsagarakis, “HEXOTRAC: A Highly Under-
Actuated Hand Exoskeleton for Finger Tracking and Force Feedback,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2016, pp. 1033–1040.

[5] J. Silvério, S. Calinon, L. D. Rozo, and D. G. Caldwell, “Learning
competing constraints and task priorities from demonstrations of
bimanual skills,” CoRR, vol. abs/1707.06791, 2017.

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person
2D Pose Estimation using Part Affinity Fields,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[7] L. Muratore, A. Laurenzi, E. Mingo Hoffman, A. Rocchi, D. G Cald-
well, and N. Tsagarakis, “XBotCore: A Real-Time Cross-Robot
Software Platform,” in IEEE International Conference on Robotic
Computing (IRC), 2017, pp. 77–80.

[8] E. Mingo Hoffman, A. Rocchi, A. Laurenzi, and N. G. Tsagarakis,
“Robot Control for Dummies: Insights and Examples using OpenSoT,”
in 17th IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2017, pp. 736–741.

[9] S. Lichiardopol, A Survey on Teleoperation, ser. DCT rapporten.
Technische Universiteit Eindhoven, 2007, dCT 2007.155.

[10] M. Stilman, K. Nishiwaki, and S. Kagami, “Humanoid Teleoperation
for Whole Body Manipulation,” in IEEE International Conference on
Robotics and Automation (ICRA), 2008, pp. 3175–3180.

[11] C. Fok, F. Sun, M. Mangum, A. K. Mok, B. He, and L. Sen-
tis, “Web Based Teleoperation of a Humanoid Robot,” CoRR, vol.
abs/1607.05402, 2016.

[12] C. Stanton, A. Bogdanovych, and E. Ratanasena, “Teleoperation
of a Humanoid Robot using Full-Body Motion Capture, Example
Movements, and Machine Learning,” in Australasian Conference on
Robotics and Automation (ACRA), 2012.

[13] R. O’Flaherty, P. Vieira, M. X. Grey, P. Oh, A. Bobick, M. Egerstedt,
and M. Stilman, “Humanoid Robot Teleoperation for Tasks with Power
Tools,” in IEEE Conference on Technologies for Practical Robot
Applications (TePRA), 2013, pp. 1–6.

[14] F. Negrello et al., “The WALK-MAN Robot in a Postearthquake
Scenario,” RAM, vol. PP, no. 99, 2018.

[15] “Toyota Unveils Third Generation Humanoid Robot T-HR3,” 2017.
[Online]. Available: goo.gl/aaztz1

[16] P. Kaiser et al., “An Affordance-Based Pilot Interface for High-Level
Control of Humanoid Robots in Supervised Autonomy,” in IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids),
2016, pp. 621–628.

[17] C. Phillips-Grafflin, N. Alunni, H. B. Suay, J. Mainprice, D. Lofaro,
D. Berenson, S. Chernova, R. W. Lindeman, and P. Oh, “Toward a
User-Guided Manipulation Framework for High-DOF Robots with
Limited Communication,” Intelligent Service Robotics (ISR), vol. 7,
no. 3, pp. 121–131, 2014.

[18] P. Balatti, D. Kanoulas, G. F. Rigano, L. Muratore, N. G. Tsagarakis,
and A. Ajoudani, “A Self-tuning Impedance Controller for Au-
tonomous Robotic Manipulation,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2018.

[19] T. Rodehutskors, M. Schwarz, and S. Behnke, “Intuitive Bimanual
Telemanipulation under Communication Restrictions by Immersive 3D
Visualization and Motion Tracking,” in IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), 2015, pp. 276–283.

[20] M. Ogawa, K. Honda, Y. Sato, S. Kudoh, T. Oishi, and K. Ikeuchi,
“Motion Generation of the Humanoid Robot for Teleoperation by Task
Model,” in 24th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), 2015, pp. 71–76.

[21] W. Song, X. Guo, F. Jiang, S. Yang, G. Jiang, and Y. Shi, “Teleoper-
ation Humanoid Robot Control System Based on Kinect Sensor,” in
4th International Conference on Intelligent Human-Machine Systems
and Cybernetics, vol. 2, 2012, pp. 264–267.

[22] S. Michieletto, E. Tosello, E. Pagello, and E. Menegatti, “Teaching
Humanoid Robotics by Means of Human Teleoperation through RGB-
D Sensors,” Robotics and Autonomous Systems (RAS), vol. 75, pp.
671–678, 2016.

[23] C. Li, C. Yang, P. Liang, A. Cangelosi, and J. Wan, “Development
of Kinect Based Teleoperation of NAO Robot,” in International
Conference on Advanced Robotics and Mechatronics (ICARM), 2016,
pp. 133–138.

[24] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra, “First-Person Tele-
Operation of a Humanoid Robot,” in IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), 2015, pp. 997–1002.

[25] P. Wang, W. Li, P. Ogunbona, J. Wan, and S. Escalera, “RGB-D-based
Human Motion Recognition with Deep Learning: A Survey,” CoRR,
vol. abs/1711.08362, 2017.

[26] J. Martinez, R. Hossain, J. Romero, and J. J. Little, “A Simple
Yet Effective Baseline for 3D Human Pose Estimation,” CoRR, vol.
abs/1705.03098, 2017.

[27] M. Oberweger and V. Lepetit, “DeepPrior++: Improving Fast and
Accurate 3D Hand Pose Estimation,” CoRR, vol. abs/1708.08325,
2017.

[28] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele, “Deepercut: A deeper, stronger, and faster multi-person
pose estimation model,” CoRR, vol. abs/1605.03170, 2016.

[29] E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “A Human
Activity Recognition System Using Skeleton Data from RGBD Sen-
sors,” Intell. Neuroscience, pp. 21–35, 2016.

[30] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional
Pose Machines,” CoRR, vol. abs/1602.00134, 2016.

[31] Y. Yang and D. Ramanan, “Articulated Human Detection with Flex-
ible Mixtures of Parts,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 35, no. 12, pp. 2878–2890, 2013.

[32] G. Rauscher, D. Dube, and A. Zell, “A Comparison of 3D Sensors
for Wheeled Mobile Robots,” Intelligent Autonomous Systems (IAS),
vol. 302, pp. 29–41, 09 2016.

[33] H. Joo, T. Simon, X. Li, H. Liu, L. Tan, L. Gui, S. Banerjee,
T. S. Godisart, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara,
and Y. Sheikh, “Panoptic Studio: A Massively Multiview System for
Social Interaction Capture,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2017.

[34] L. Baccelliere et al., “Development of a Human Size and Strength
Compliant Bi-Manual Platform for Realistic Heavy Manipulation
Tasks,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017, pp. 5594–5601.

[35] B. Delhaisse, D. Esteban, L. Rozo, and D. Caldwell, “Transfer Learn-
ing of Shared Latent Spaces Between Robots with Similar Kinematic
Structure,” in International Joint Conference on Neural Networks
(IJCNN), 2017, pp. 4142–4149.


