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Translating Videos to Commands for Robotic Manipulation
with Deep Recurrent Neural Networks

Anh Nguyen', Dimitrios Kanoulas', Luca Muratore?, Darwin G. Caldwell!, and Nikos G. Tsagarakis'

Abstract— We present a new method to translate videos
to commands for robotic manipulation using Deep Recurrent
Neural Networks (RNN). Our framework first extracts deep
features from the input video frames with a deep Convolutional
Neural Networks (CNN). Two RNN layers with an encoder-
decoder architecture are then used to encode the visual features
and sequentially generate the output words as the command.
We demonstrate that the translation accuracy can be improved
by allowing a smooth transaction between two RNN layers and
using the state-of-the-art feature extractor. The experimental
results on our new challenging dataset show that our approach
outperforms recent methods by a fair margin. Furthermore,
we combine the proposed translation module with the vision
and planning system to let a robot perform various manipu-
lation tasks. Finally, we demonstrate the effectiveness of our
framework on a full-size humanoid robot WALK-MAN.

I. INTRODUCTION

The ability to perform actions based on observations of
human activities is one of the major challenges to increase
the capabilities of robotic systems [1]. Over the past few
years, this problem has been of great interest to researchers
and remains an active field in robotics [2]. By understanding
human actions, robots may be able to acquire new skills,
or perform different tasks, without the need for tedious
programming. It is expected that the robots with these
abilities will play an increasingly more important role in
our society in areas such as assisting or replacing humans
in disaster scenarios, taking care of the elderly, or helping
people with everyday life tasks.

In this paper, we argue that there are two main capabilities
that a robot must develop to be able to replicate human activ-
ities: understanding human actions, and imitating them. The
imitation step has been widely investigated in robotics within
the framework of learning from demonstration (LfD) [3].
In particular, there are two main approaches in LfD that
focus on improving the accuracy of the imitation process:
kinesthetic teaching [4] and motion capture [5]. While the
first approach needs the users to physically move the robot
through the desired trajectories, the second approach uses
a bodysuit or camera system to capture human motions.
Although both approaches successfully allow a robot to
imitate a human, the number of actions that the robot can
learn is quite limited due to the need of using expensively
physical systems (i.e., real robot, bodysuit, etc.) to capture
the training data [4] [5].
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Fig. 1. Translating videos to commands for robotic manipulation.

The understanding step, on the other hand, receives more
attention from the computer vision community. Two popular
problems that receive a great deal of interest are video
classification [6] and action recognition [7]. However, the
outputs of these problems are discrete (e.g., the action classes
used in [7] are “diving”, “biking”, “skiing”, etc.), and do not
provide further meaningful clues that can be used in robotic
applications. Recently, with the rise of deep learning, the
video captioning problem [8] has become more feasible to
tackle. Unlike the classification or detection tasks, the output
of the video captioning task is a natural language sentence,
which is potentially useful in robotic applications.

Inspired by the recent advances in computer vision, this
paper describes a deep learning framework that translates
an input video to a command that can be used in robotic
applications. While the field of LfD [3] focuses mainly on
the imitation step, we focus on the understanding step, but
our method also allows the robot to perform useful tasks via
the output commands. Our goal is to bridge the gap between
computer vision and robotics, by developing a system that
helps the robot understand human actions, and use this
knowledge to complete useful tasks. In particular, we first
use CNN to extract deep features from video frames, then
two RNN layers are used to learn the relationship between
the visual features and the output command. Unlike the video
captioning problem [8] which describes the output sentence
in a natural language form, we use a grammar-free form
to describe the output command. We show that our solely
neural architecture further improves the state of the art, while
its output can be applied in real robotic applications. Fig. [I]
illustrates the concept of our method.

Next, we review the related work in Section |lI} then de-
scribe our network architecture in Section [Tl In Section [[V]
we present the experimental results on the new challenging
dataset, and on the full-size humanoid robot. Finally, we
discuss the future work and conclude the paper in Section



II. RELATED WORK

In the robotic community, LfD techniques are widely used
to teach the robots new skills based on human demonstra-
tions. Koenemann et al. [5] introduced a real-time method to
allow a humanoid robot to imitate human whole-body mo-
tions. Recently, Welschehold et al. [9] proposed to transform
human demonstrations to different hand-object trajectories in
order to adapt to robotic manipulation tasks. The advantage
of LfD methods is their abilities to let the robots accurately
repeat human motions, however, it is difficult to expand LfD
techniques to a large number of tasks since the training
process is usually designed for a specific task or needs
training data from real robotic systems [4].

From a computer vision viewpoint, Aksoy et al. [10]
introduced a framework that represents the continuous human
actions as ‘“semantic event chains” and solved the problem
as an activity detection task. In [11], Yang et al. proposed to
learn manipulation actions from unconstrained videos using
CNN and grammar based parser. However, this method needs
an explicit representation of both the objects and grasping
types to generate command sentences. Recently, the authors
in [12] introduced an unsupervised method to link visual
features to textual descriptions in long manipulation tasks. In
this paper, we propose to directly learn the output command
sentences from the input videos without any prior knowledge.
Our method takes advantage of CNN to learn robust features,
and RNN to model the sequences, while being easily adapted
to any human activity.

Although commands, or in general natural languages, are
widely used to control robotic systems. They are usually
carefully programmed for each task. This limitation means
programming is tedious if there are many tasks. To au-
tomatically understand the commands, the authors in [13]
formed this problem as a probabilistic graphical model based
on the semantic structure of the input command. Similarly,
Guadarrama et at. [14] introduced a semantic parser that
used both natural commands and visual concepts to let the
robot execute the task. While we retain the concepts of [13]
and [14], the main difference in our approach is that we
directly use the grammar-free commands from the translation
module. This allows us to use a simple similarity measure
to map each word in the generated command to the real
command on the robot.

In deep learning, Donahue et al. [15] made a first attempt
to tackle the video captioning problem. The features were
first extracted from video frames with CRF then fed to a
LSTM network to produce the output captions. In [8], the
authors proposed a sequence-to-sequence model to generate
captions for videos from both RGB and optical flow images.
Yu et al. [16] used a hierarchical RNN to generate one or
multiple sentences to describe a video. In this work, we cast
the problem of translating videos to commands as a video
captioning task to build on the strong state the art in computer
vision. Furthermore, we use the output of the deep network
as the input command to control a full-size humanoid robot,
allowing it to perform different manipulation tasks.

III. TRANSLATING VIDEOS TO COMMANDS

We start by formulating the problem and briefly describing
two popular RNNs use in our method: Long-Short Term
Memory (LSTM) [17] and Gated Recurrent Neural network
(GRU) [18]. Then we present the network architecture that
translates the input videos to robotic commands.

A. Problem Formulation

We cast the problem of translating videos to commands
as a video captioning task. In particular, the input video is
considered as a list of frames, presented by a sequence of
features X = (x1,Xa,...,X,) from each frame. The output
command is presented as a sequence of word vectors Y =
(¥1,¥2, .-, Ym), in which each vector y represents one word
in the dictionary D. The video captioning task is to find for
each sequence feature X; its most probable command Y.
In practice, the number of video frames n is usually greater
than the number of words m. To make the problem become
more suitable for robotic applications, we use a dataset that
contains mainly human’s manipulation actions and assume
that the output command Y is in grammar-free format.

B. Recurrent Neural Networks

1) LSTM: LSTM is a well-known RNN for effectively
modelling the long-term dependencies from the input data.
The core of an LSTM network is a memory cell ¢ which has
the gate mechanism to encode the knowledge of the previous
inputs at every time step. In particular, the LSTM takes an
input x; at each time step ¢, and computes the hidden state
h; and the memory cell state c; as follows:

(Waixy + Wiihy 1 + by)
(Warxi + Whrhi 1 +by)
0; = 0(Waoxy + Wiohy_1 +by)
gt = O(Wagxy + Wyghi_1 + by)
ci=FfOci_1 +irOgs

h; = 0; © ¢(cy)

where © represents element-wise multiplication, the function
o: R~ [0,1],0(z) = H-% is the sigmod non-linearity,
and ¢ : R — [-1,1],¢(z) = &%= is the hyperbolic
tangent non-linearity. The weight W and bias b are trained
parameters. With this gate mechanism, the LSTM network
can remember or forget information for long periods of time,
while is still robust against vanishing or exploding gradient
problems. In practice, the LSTM network is straightforward
to train end-to-end and can handle inputs with different
lengths using the padding techniques.

2) GRU: A popular variation of the LSTM network is
the GRU proposed by Cho et al. [18]. The main advantage
of the GRU network is that it requires fewer computations
in comparison with the standard LSTM, while the accuracy
between these two networks are competitive. Unlike the
LSTM network, in a GRU, the update gate controls both the
input and forget gates, and the reset gate is applied before
the nonlinear transformation as follows:
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An overview of our approach. We first extract the deep features from the input frames using CNN. Then the first LSTM/GRU layer is used to

encode the visual features. The input words are fed to the second LSTM/GRU layer and this layer sequentially generates the output words.
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where r, z;, h; represent the reset, update, and hidden gate
respectively.

2

C. Videos to Commands

1) Command Embedding: Since a command is a list of
words, we have to represent each word as a vector for
computation. There are two popular techniques for word
representation: one-hot encoding and word2vec [19] em-
bedding. Although the one-hot vector is high dimensional
and sparse since its dimensionality grows linearly with the
number of words in the vocabulary, it is straightforward to
use this embedding in the video captioning task. In this
work, we choose the one-hot encoding technique as our word
representation since the number of words in our dictionary
is relatively small (i.e., |[D| = 128). The one-hot vector
y € RIPlis a binary vector with only one non-zero entry
indicating the index of the current word in the vocabulary.
Formally, each value in the one-hot vector y is defined by:

yi— { (1) if j = ind(y) )

otherwise

where ind(y) is the index of the current word in the
dictionary D. In practice, we add an extra word EOC to
the dictionary to denote the end of command sentences.

2) Visual Features: We first sample n frames from each
input video in order to extract deep features from the images.
The frames are selected uniformly with the same interval if
the video is too long. In case the video is too short and
there are not enough n frames, we create an artificial frame
from the mean pixel values of the ImageNet dataset [20] and
pad this frame at the end of the list until it reaches n frames.
We then use the state-of-the-art CNN to extract deep features
from these input frames. Since the visual features provide the
key information for the learning process, three popular CNN
are used in our experiments: VGG16 [21], Inception_v3 [22],
and ResNet50 [23].

Specifically, for the VGG16 network, the features are ex-
tracted from its last fully connected f£c2 layer. For the Incep-
tion_v3 network, we extract the features from its pool_3:0
tensor. Finally, we use the features from pool5 layer
of the ResNet50 network. The dimension of the extracted
features is 4096, 2048, 2048, for the VGG16, Inception_v3,
and ResNet50 network, respectively. All these CNN are
pretrained on ImageNet dataset for image classifications. We
notice that the names of the layers we mention here are based
on the Tensorflow [24] implementation of these networks.

3) Architecture: Our architecture is based on the encoder-
decoder scheme [8] [25] [26], which is adapted from the pop-
ular sequence to sequence model [27] in machine translation.
Although recent approaches to video captioning problem
use attention mechanism [26] or hierarchical RNN [16], our
proposal solely relies on the neural architecture. Based on
the input data characteristics, our network smoothly encodes
the input visual features and generates the output commands,
achieving a fair improvement over the state of the art without
using any additional modules.

In particular, given an input video, we first extract visual
features from the video frames using the pretrained CNN
network. These features are encoded in the first RNN layer
to create the encoder hidden state. The input words are then
fed to the second RNN layer, and this layer will decode se-
quentially to generate a list of words as the output command.
Fig. 2] shows an overview of our approach. More formally,
given an input sequence of features X = (x1, X2, ...,Xp),
we want to estimate the conditional probability for an output

command Y = (y1,y2,...,¥m) as follows:
m
P(y1, oo YmlX1, o Xn) = [ [ PGilyi1, v, X) (@)
i=1

Since we want a generative model that encodes a sequence
of features and produces a sequence of words in order as
a command, the LSTM/GRU is well suitable for this task.
Another advantage of LSTM/GRU is that they can model
the long-term dependencies in the input features and the
output words. In practice, we conduct experiments with the
LSTM and GRU network as our RNN, while the input visual
features are extracted from the VGGI16, Inception_v3, and
ResNet50 network, respectively.



In the encoding stage, the first LSTM/GRU layer converts
the visual features X = (x1,Xa,...,X,) to a list of hidden
state vectors H® = (h$, hS,...,h¢) (using Equation [1] for
LSTM or Equation [2| for GRU). Unlike [25] which takes the
average of all n hidden state vectors to create a fixed-length
vector, we directly use each hidden vector h{ as the input
x¢ for the second decoder layer. This allows the smooth
transaction from the visual features to the output commands
without worrying about the harsh average pooling operation,
which can lead to the loss of temporal structure underlying
the input video.

In the decoding stage, the second LSTM/GRU layer con-
verts the list of hidden encoder vectors H€ into the sequence
of hidden decoder vectors H?. The final list of predicted
words Y is achieved by applying a softmax layer on the
output H? of the LSTM/GRU decoder layer. In particular, at
each time step ¢, the output z; of each LSTM/GRU cell in
the decoder layer is passed though a linear prediction layer
vy = W,z + b, and the predicted distribution P(y;) is
computed by taking the softmax of y, as follows:

exp(Ve.w)
Zw/eD exp(¥t,w')

P(Yt = W‘Zt) = )

where W, and b, are learned parameters, w is a word in
the dictionary D.

In this way, the LSTM/GRU decoder layer sequentially
generates a conditional probability distribution for each word
of the output command given the encoded features represen-
tation and all the previously generated words. In practice,
we preprocess the data so that the number of input words
m is equal to the number of input frames n. For the input
video, this is done by uniformly sampling n frames in the
long video, or padding the extra frame if the video is too
short. Since the number of words m in the input commands
is always smaller than n, we pad a special empty word to
the list until we have n words.

4) Training: The network is trained end-to-end with
Adam optimizer [28] using the following objective function:

arg;HaXZZOQP(YHYFh Y13 0) (6)

i=1

where 6 represents the parameters of the network.

During the training phase, at each time step ¢, the input
feature x; is fed to an LSTM/GRU cell in the encoder layer
along with the previous hidden state hf_; to produce the
current hidden state hf. After all the input features are
exhausted, the word embedding and the hidden states of
the first LSTM/GRU encoder layer are fed to the second
LSTM/GRU decoder layer. This decoder layer converts the
inputs into a sequence of words by maximizing the log-
likelihood of the predicted word (Equation [6). This decoding
process is performed sequentially for each word until the
network generates the end-of-command (EOC) token.

IV. EXPERIMENTS
A. Dataset

Recently, the task of describing video using natural lan-
guage has gradually received more interest in the com-
puter vision community. Eventually, many video description
datasets have been released [29]. However, these datasets
only provide general descriptions of the video and there is
no detailed understanding of the action. The captions are
also written using natural language sentences which can not
be used directly in robotic applications. Motivated by these
limitations, we introduce a new video to command (IIT-
V2C) dataset which focuses on fine-grained action under-
standing [30]. Our goal is to create a new large scale dataset
that provides fine-grained understanding of human actions
in a grammar-free format. This is more suitable for robotic
applications and can be used with deep learning methods.

Video annotation Since our main purpose is to develop a
framework that can be used by real robots for manipulation
tasks, we use only videos that contain human actions. To this
end, the raw videos in the Breakfast dataset [31] are best
suited to our purpose since they were originally designed
for activity recognition. We only reuse the raw videos from
this dataset and manually segment each video into short clips
in a fine granularity level. Each short clip is then annotated
with a command sentence that describes the current human
action.

Dataset statistics In particular, we reuse 419 videos
from the Breakfast dataset. The dataset contains 52 unique
participants performing cooking tasks in different kitchens.
We segment each video (approximately 2 — 3 minutes long)
into around 10 — 50 short clips (approximately 1 — 15
seconds long), resulting in 11, 000 unique short videos. Each
short video has a single command sentence that describes
human actions. We use 70% of the dataset for training
and the remaining 30% for testing. Although our new-form
dataset is characterized by its grammar-free property for the
convenience in robotic applications, it can easily be adapted
to classical video captioning task by adding the full natural
sentences as the new groundtruth for each video.

B. Evaluation Metric, Baseline, and Implementation

Evaluation Metric We report the experimental results
using the standard metrics in the captioning task [29]: BLEU,
METEOR, ROUGE-L, and CIDEr. This makes our results
directly comparable with the recent state-of-the-art methods
in the video captioning field.

Baseline We compare our results with two recent methods
in the video captioning field: S2VT [8] and SGC [26]. The
authors of S2VT used LSTM in the encoder-decoder archi-
tecture, while the inputs are from the features of RGB images
(extracted by VGG16) and optical flow images (extracted
by AlexNet). SGC also used LSTM with encoder-decoder
architecture, however, this work integrated a saliency guided
method as the attention mechanism, while the features are
from Inception_v3. We use the code provided by the authors
of the associated papers for the fair comparison.



SGC: lefthand reach stove
S2VT: lefthand reach pan

GT: righthand carry spatula
QOurs: righthand carry spatula

SGC: lefthand reach spatula
S2VT: righthand carry egg

GT: righthand crack egg
Ours: righthand carry egg

Fig. 3.

Implementation We use 512 hidden units in both LSTM
and GRU in our implementation. The first hidden state of
LSTM/GRU is initialized uniformly in [—0.1, 0.1]. We set the
number of frames for each input video at 30. Sequentially, we
consider each command has maximum 30 words. If there are
not enough 30 frames/words in the input video/command, we
pad the mean frame (from ImageNet dataset)/empty word at
the end of the list until it reaches 30. During training, we only
accumulate the softmax losses of the real words to the total
loss, while the losses from the empty words are ignored. We
train all the networks for 150 epochs using Adam optimizer
with a learning rate of 0.0001. The batch size is empirically
set to 16. The training time for each network is around 3
hours on a NVIDA Titan X GPU.

C. Results

TABLE I
PERFORMANCE ON IIT-V2C DATASET

Bleu.l Bleu2 Bleu3 Bleu4 METEOR ROUGE.L CIDEr

S2VT [8] 0.383 0.265 0.201 0.159 0.183  0.382 1.431

SGC [26] 0.370 0.256 0.198 0.161 0.179  0.371 1.422
LSTM_VGGI16 0.372 0.255 0.193 0.159 0.180 0.375 1.395
GRU_VGG16 0.350 0.233 0.173 0.137 0.168  0.351 1.255
LSTM_Inception_v3 0.400 0.286 0.221 0.178 0.194 0.402 1.594
GRU_Inception_v3 0.391 0.281 0.222 0.188 0.190 0.398 1.588
LSTM_ResNet50 0.398 0.279 0.215 0.174 0.193  0.398 1.550
GRU_ResNet50 0.398 0.284 0.220 0.183 0.193 0399 1.567

Table [[| summarizes the captioning results on the IIT-V2C
dataset. Overall, the LSTM network that uses visual features
from Inception_v3 (LSTM_Inception_v3) achieves the high-
est performance, winning on the Blue_1, Blue_ 2, METEOR,
ROUGE_L, and CIDEr metrics. Our LSTM Inception_v3
also outperforms S2VT and SGC in all metrics by a fair
margin. We also notice that both the LSTM_ResNet50 and
GRU_ResNet50 networks give competitive results in com-
parison with the LSTM_Inception_v3 network. Overall, we
observe that the architectures that use LSTM give slightly
better results than those using GRU. However, this difference
is not significant when the ResNet50 features are used
to train the models (LSTM_ResNet50 and GRU_ResNet50
results are a tie).

GT: righthand cut fruit
Ours: righthand cut fruit

SGC: righthand cut fruit
S2VT: righthand cut fruit

SGC: righthand place kettle
S2VT: righthand take cacao

GT: righthand stir milk
Ours: righthand hold teabag

Example of translation results of the S2VT, SGC and our LSTM_Inception_v3 network on the IIT-V2C dataset.

From the experiments, we notice that there are two main
factors that affect the results of this problem: the network
architecture and the input visual features. Since the IIT-V2C
dataset contains mainly the fine-grained human actions in a
limited environment (i.e., the kitchen), the SGC architecture
that used saliency guide as the attention mechanism does not
perform well as in the normal video captioning task. On the
other hand, the visual features strongly affect the final results.
Our experiments show that the ResNet50 and Inception_v3
features significantly outperform the VGG16 features in both
LSTM and GRU networks. Since the visual features are not
re-trained in the sequence to sequence model, in practice it
is crucial to choose the state-of-the-art CNN as the feature
extractor for the best performance.

Fig. [ shows some examples of the generated commands
by our LSTM _Inception_v3, S2VT, and SGC models on the
test videos of the IIT-V2C dataset. These qualitative results
show that our LSTM_Inception_v3 gives good predictions in
many cases, while S2VT and SGC results are more variable.
In addition to the good predictions that are identical with the
groundtruth, we note that many other generated commands
are relevant. Due to the nature of the IIT-V2C dataset,
most of the videos are short and contain fine-grained human
manipulation actions, while the groundtruth commands are
also very short. This makes the problem of translating videos
to commands is more challenging than the normal video
captioning task since the network has to rely on the minimal
information to predict the output command.

D. Robotic Applications

Given the proposed translation module, we build a robotic
framework that allows the robot to perform various manip-
ulation tasks by just “watching” the input video. Our goal
in this work is similar to [11], however, we propose to keep
the video understanding separately from the vision system.
In this way, the robot can learn to understand the task and
execute it independently. This makes the proposed approach
more practical since it does not require a dataset that has both
the caption and the object (or grasping) location. It is also
important to note that our goals differ from LfD since we
only focus on finding a general way to let the robot execute
different manipulation actions, while the trajectory in each
action is assumed to be known.



(b) Pouring task

Fig. 4. Example of manipulation tasks performed by WALK-MAN using our proposed framework. (a) Pick and place task. (b) Pouring task. The frames
from human instruction videos are on the left side, while the robot performs actions on the right side. We notice that there are two sub-tasks (i.e., two
commands) in these tasks: grasping the object and manipulating it. More illustrations can be found in the supplemental video.

In particular, for each task presented by a video, the trans-
lation module will generate an output command sentence.
Based on this command, the robot uses its vision system to
find relevant objects and plan the actions. Experiments are
conducted using the humanoid WALK-MAN [32]. The robot
is controlled using the XBotCore software architecture [33],
while the OpenSoT library [34] is used to plan full-body mo-
tion. The relevant objects and their affordances are detected
using AffordanceNet framework [35]. For simplicity, we only
use objects in the IIT-Aff dataset [36] in the demonstration
videos so the robot can recognize them. Using this setup, the
robot can successfully perform various manipulation tasks
by closing the loop: understanding the human demonstration
from the video using the proposed method, finding the
relevant objects and grasping poses [36], and planning for
each action [34].

Fig. [] shows some manipulation tasks performed by
WALK-MAN using our proposed framework. For a sim-
ple task such as “righthand grasp bottle”, the robot can
effectively repeat the human action through the command.
Since the output of our translation module is in grammar-
free format, we can directly map each word in the command
sentence to the real robot command. In this way, we avoid
using other modules as in [13] to parse the natural command
into the one that uses in the real robot. The visual system also
plays an important role in our framework since it provides the
object location and the target frames (e.g., grasping frame,
ending frame) for the robot to plan the actions. Using our
approach, the robot can also complete long manipulation
tasks by stacking a list of demonstration videos in order for
the translation module. Note that, for the long manipulation
tasks, we assume that the ending state of one task will be
the starting state of the next task. Overall, WALK-MAN
successfully performs various manipulation tasks such as
grasping, pick and place, or pouring. The experimental video
and our IIT-V2C dataset can be found at the following link:

https://sites.google.com/site/video2command/:

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new method to translate
human demonstration videos to commands using deep re-
current neural networks. We conducted experiments with
the LSTM and GRU network using different visual feature
representations. The experimental results showed that our
purely neural sequence to sequence architecture outper-
formed current state-of-the-art methods by a fair margin.
We also introduced a new large-scale videos to commands
dataset that is suitable for deep learning methods. Finally, we
combined our proposed method with the vision and planning
module, and performed various manipulation tests on a real
full-size humanoid robot.

Our robotic experiments so far are qualitative. We have
focused on demonstrating how our approach can be used in
a real robotic system to reduce the (tedious) programming
when there are many manipulation tasks. Although using the
learning approach to translate the demonstration videos to
commands could help the robot understand human actions
in a meaningful way, the imitation step is still challenging
since it requires a robust vision, planning (and LfD) system.
Currently, our framework relies solely on the vision system
to plan the actions. This does not allow the robot to perform
accurate tasks such as “hammering” or “cutting” which
require precise skills. Therefore, an interesting problem is
to combine our approach with LfD techniques to improve
the robot manipulation capabilities.
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