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Abstract— This paper describes a terrain classification
method based on the readings from the force/torque sensors
mounted on the ankles of a humanoid robot. The experi-
mental results on five different terrain types, showed very
high precision and recall identification rates, i.e. 95%, that
are surpassing the state-of-the-art ones for quadrupeds and
hexapods. Based on the acquired data during a set of walking
experiments, we evaluated the stability of locomotion on all
of the terrains. We also present a method to find an optimal
step size, which optimises both the energy consumption and
the stability of locomotion, given the identified terrain type. For
the experimental data collection we used the full-size humanoid
robot WALK-MAN walking on five different types of terrain.

I. INTRODUCTION

Research on humanoid robots has its long history with
several waves of interest in the topic. Over the past few
years we observed a renaissance in the research on bipedal
locomotion. This is due to the 2015 DARPA Robotics
Challenge (DRC), where humanoid robots were supposed to
perform in scenarios related to disaster response tasks. One
of the observations, according to the report in [1], is that
the robots’ behaviour in the DRC was fragile. This remark
is followed by the suggestion that the ways to make robots
robust, even under expected variations, are sought. In this
paper we are presenting a step towards this goal. Through
terrain perception we allow the robot to accommodate its
locomotion to the variation of the terrain parameters.

The importance of the investigated problem lays in the
fact that in most of the bipedal locomotion approaches, hard
contacts with the ground are assumed. Whereas, in real
life scenarios this may not be true. Even though there is
a margin (allowed error) in the locomotion controller that
makes the robot compliant to the small terrain variations [2],
there are no explicit implementations which deal with the
changing terrain properties. This negligence may lead to the
catastrophic consequence of falling down while walking on
an unmodeled terrain. In such a scenario the robot may be un-
able to continue its mission. Having an algorithm that allows
the robot to identify the terrain with high confidence, using
the sensors on its feet, will give the possibility to eliminate
most of the falls while walking on different surfaces.
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Fig. 1. The full-size humanoid robot WALK-MAN. In detail: the legs, the
foot, the ankle-mounted force/torque sensor (with its local axes), and the
pelvis including the Inertial Measurement Unit (IMU) in blue.

A. State of the Art

In our survey of the related work we first focus on the
humanoid robots and their locomotion controllers and then
present different approaches to tactile terrain perception for
multi-legged robotic platforms. We end the review with some
examples of using different sensing modalities for terrain
identification.

a) Humanoid Robots: The gait control system for
the contemporary humanoid robots is mostly based on the
Zero Moment Point (ZMP) computation. Robots such as
STARO [3], Valkyrie [4], and WALK-MAN [5] are using
such an approach together with motor position control. The
reference positions of the joints come from the locomotion
controller, which in many cases is based on a Linear In-
verted Pendulum (LIP) model, e.g. the preview controller
developed by Kajita et al. [6], which is used in HUBO [7],
HRP-2 [8], and many other robots. Kuindersma et al. [9]
extended this approach to a continuous time-varying linear-
quadratic regulator problem for ZMP tracking and applied it
to the ATLAS robot. The controllers that were used in the
aforementioned robots do not model ground properties. A
robot which is explicitly addressing this issue in its control
algorithm is THORMANG [10], where mass-spring-damper
model of contact is used. Another similar controller was
developed by Hashimoto et al. [11], where a mass-spring
model of the terrain was used. The ankle orientation was
controlled to enable their robot, WABIAN-2R, to walk on a



Fig. 2. Left: The robot on the fifth terrain type (thin wood on the grass carpet). Right: The five experimental terrain types.

soft terrain. In the approach implemented on the ESCHER
robot [2], the locomotion on soft terrains is enabled by
empirically shifting the Center-of-Pressure (CoP) towards the
inner part of the supporting feet, while skipping the terrain
modelling. Brandao et al. [12] proposed a method to optimise
the gait parameters depending on the frictional properties of
the terrain, while a bio-inspired foothold selection system for
bipeds was introduced in [13], [14]. In most of the existing
methods, however, the terrain is either identified in advance
or is assumed to be known, while the terrain identification
problem is not being addressed.

b) Tactile Terrain Identification: Although, the prob-
lem of perception for terrain identification has not been
extensively explored so far in the literature for humanoid
robots, a lot of work has been done for other types of
legged platforms. In one of the latest examples in [15], the
quadruped robot AIBO was able to distinguish six indoor
surface types, using the fused accelerometer and ground
contact force sensor data. An interesting research work,
related to our contribution, was described in [16]. In that
work, a quadruped robot was traversing different grounds
using a variety of gaits. Based on a proprioceptive suit of
sensors (encoders on active and passive compliant joints),
inertial units, and foot pressure sensors, the influence of
different gaits on classification performance was assessed.
In [17], a technically blind six-legged walking robot, was
able to identify terrains, using feedback from the robot‘s
actuators and the desired trajectory.

Most of the work on terrain classification is done using
various approaches of supervised learning. However, in [18]
the authors performed unsupervised tactile data clustering,
using the Pitman-Yor process. Additionally, in [19] a ground
model identification framework was presented, where exper-
iments were performed for a single leg in a very controlled
environment and the relationship between the parameters of
the conventional models and the terramechanics models were
found.

c) Terrain Identification with other Sensing Modalities:
To show our results in a broader scope, some of the terrain
identification examples, using different sensing modalities,

are given. Vision was used for terrain identification in the
task of quadruped locomotion [20], while the use of a 7 bend
spectral camera together with the visual light bands was
proposed in [21]. In addition, the use of Laser Range Finder,
exploiting intensity signals, was described in [22].

B. Contribution

Encouraged by our previous achievements on tactile ter-
rain identification for a six-legged robot [23] and other
approaches for quadruped robots such as in [24], we have
posited the hypothesis. It is possible to perform terrain
identification and adjust gait parameters of a humanoid robot
based on the tactile perception. The contribution of our work
is threefold. First, we show that the tactile perception is a
reliable source of information for terrain identification on
humanoid robots. Additionally, we apply a new descriptor
for force/torque signals to achieve a better classification
performance than the state-of-the-art solutions (∼ 8% better
in terms of precision and ∼ 5% in terms of recall rate).
Finally, we provide an example of how the gait parameters
can be optimised, based on the terrain type that was identified
in the classification process and the locomotion performance
on each terrain in terms of energy and stability.

The structure of the paper is as follows. First, the robotic
platform and the experimental setup are presented. Next,
the tactile perception and the terrain classification methods
are described, followed by the methodology of gait param-
eters optimisation based on the robot energy expenditure
and the locomotion stability. Subsequently, the classification
and stability/energy results are provided, followed by the
conclusions and the future work plans.

II. SETUP

In this section, we first describe the robotic system along
with its locomotion controller, and then present the flat
terrain types that were used for the classification and the
locomotion energy/stability analysis.

A. Robot Description

For the experimental demonstration of the introduced
method, we use the full-size humanoid robot WALK-MAN



(Fig. 1). WALK-MAN is an electric motor driven robot with
31 Degrees-of-Freedom (DoF). In the experiments only the
legs (6DoF each) and the pelvis have been used for locomo-
tion. The robot is 1.91m tall and weighs 118kg (without the
battery). Its Series Elastic high-end Actuation (SEA) units
can reach velocities up to 19.5rad/sec and torques up to
400Nm. There are four 6DoF force/torque (F/T) sensors at
the end-effectors, two at the wrists and two at the ankles.
The local coordinate frame of the ankle’s F/T sensor, which
was used in this paper, is attached to each robot’s foot in the
way that is shown in the lower part of Fig. 1. An Inertial
Measurement Unit (IMU) is attached at the pelvis to record
the acceleration and orientation state, while the visual sensor
is a CMU Multisense-SL system which includes a stereo
camera, a lidar sensor, and an IMU. For the communication,
we use the YARP middleware framework [25], while the
visual and the force/torque data are acquired using the
ROS [26] framework.

1) Locomotion Control: To move the robot, we use a
motor position controller. The joint space references are
the result of the precomputed gait pattern and the real-
time feedback controller. The gait pattern is a set of task
space references that fully define the 3D motion of the robot
in space. For the purpose of pure locomotion we use the
references of the pelvis and the feet, and freeze the upper
body at a chosen configuration.

The trajectory of the pelvis is generated based on the
reference trajectories of the end-effectors and the ZMP,
which depend on the step size and its duration. It is calculated
with the preview controller developed by Kajita et al. [6],
which in the first iteration generates the initial Center-of-
Mass (CoM) trajectory and then simulates the motion using a
multibody model of the robot to calculate the expected ZMP
trajectory. Then, the discrepancy between the initial ZMP
reference and the ZMP from the multibody model simulation
is used to modify the CoM reference to improve the ZMP
tracking. Finally, the CoM reference is translated into the
pelvis reference at every sampling time of the multi-body
simulation.

When the gait pattern is executed in the feed-forward
manner, the errors in the modelling and environment recon-
struction can cause an unstable locomotion, especially on the
WALK-MAN platform equipped with SEAs. To stabilise the
locomotion we use the torso position compliance controller
that was introduced in [27]. The controller, based on the
estimated ZMP position, modifies the pelvis reference to
simultaneously track the ZMP reference and prevent the
divergence of the CoM from the original reference.

B. Apparatus Setup

The experimental setup involves the following five types
of terrain, for which the locomotion varies in stability due to
difference in their properties, such as stiffness and friction
(Fig. 2):

• terrain 1: a solid ground floor
• terrain 2: a 4-layers black carpet
• terrain 3: a single layer grass carpet

Fig. 3. An example of measured force and torque signals, with the sensor
mounted on the left ankle. The robot was walking on a solid ground (i.e.
terrain 1) with a 10cm step length. Each subplot represents a different
signal.

• terrain 4: a layer of thin wood on the solid ground floor
• terrain 5: a layer of thin wood on the grass carpet
The 4-layers black carpet is totally 6.5mm thick, while

the thickness of the grass carpet and the wood is 5.3mm
and 4.5mm, respectively. In every experimental run we set
the robot on each of the five flat terrains and we let it
walk 10 steps ahead, remaining solely on the same terrain
type. For each terrain we run 5 experiments, by changing
the locomotion step size to 0.02m, 0.04m, 0.06m, 0.08m,
and 0.1m, respectively. We run each of these experiments 5
times, 50 steps per each terrain and stride size. For all the
terrains we gathered 1250 steps in total. Note that each step
is planned to be executed in 1.3sec independent of the step
size.

For each trial we collected the following data: the ankle
force/torque measurements for each leg at 100Hz and the
pelvis IMU data including orientation and acceleration at
200Hz.

III. METHODS

Having described the robotic system and the terrain types,
we now present the data acquisition and processing proce-
dure, followed by the terrain classification method and the
energy/stability analysis that was used for the gait parameter
adaptation.

A. Tactile Perception

The terrain identification is based on the registered ankle
F/T data. A sample reading from the left F/T ankle sensor,
while the robot is walking on the solid ground floor with a
10 cm step length, is shown in Fig. 3. Each of the subplots



Fig. 4. Fourier responses for two different terrain types: the solid ground
(terrain 1) and the thin wood on the grass carpet (terrain 5). The robot step
size equals to 10cm. Subplots (a) and (d) show the spectrum for the Fx

signals, (b) and (e) for the Fy , and (c) and (f) for the Fz data accordingly.

presents different force or torque signals. The recorded sig-
nals for each experimental trial include 5 steps for both left
and right leg, i.e. 10 steps in total. Such data require further
processing. The recorded signals were split into separate
steps. Based on the Fz signal reading, we search for its local
minima – impacts when the foot is touching the ground. A
set of samples that starts in one minimum and ends in the
subsequent one is treated as a single step. An example result
of this procedure is marked with green crosses, as illustrated
in Fig. 3-c.

B. Terrain Classification

Using the single steps that were extracted as described in
Sec. III-A, we computed the descriptors of the signals. In our
approach two methods were used for data reduction: the Fast
Fourier Transform (FFT) and the Discrete Wavelet Transform
(DWT). The FFT approach was successfully applied for a
similar problem in our previous work in [23], while the DWT,
to the best of our knowledge, is applied for the first time in
a terrain classification process based on F/T signals.

First, we used and focused on the FFT approach. An
example output of the FFT for the force signals is shown
in Fig. 4. The vector of features is built using 20 modes

Fig. 5. Discrete Wavelet Transform responses for two different terrain
types: the solid ground (terrain 1) and the thin wood on the grass carpet
(terrain 5). The robot step size equals to 10 cm. The scalogram for the Fz

signal recorded for terrain 1 (a) and for terrain 5 (b).

from the spectrum (2–21). The exclusion of the first mode,
which is mostly dominating and suppressing the information
content from the subsequent modes with smaller responses,
is intentional. In [23] we presented more details and tests
on the appropriate number of samples and the arrangement
of the window. The whole feature vector consists of 120
elements – 6 signals× 20 features.

In our second approach we used the DWT method. The
output of such a transformation is shown in Fig. 5. In our
case the Daubechies wavelet [28], which is commonly used
in the signal processing community, was used. Namely, the
one with 4 vanishing moments (db4) was applied. In Fig. 5-a,
the scalogram represents the responses of the scaled db4 on
different levels, for the Fz signal that was recorded on the
solid ground (terrain 1). In the DWT the mother wavelet
is translated in the time domain (at a certain level) and
dilated (stretched) in the frequency domain (level switch).
The wavelet is localised in the time and frequency domains
simultaneously, contrary to the FFT, where only localisation
in the frequency domain is provided. The use of the DWT
gives the advantage of having a richer descriptor of the
signal, especially when the signal is non-stationary, which



is the case for the data recorded in our experiments. Fig. 5-b
represents the scalogram obtained for a different terrain
type, i.e. wood on grass carpet (terrain 5). The differences
between scalograms in Fig. 5-a and Fig. 5-b could be visually
observed. This gives the intuitive observation that this type of
descriptor could provide good discrimination between terrain
classes.

Let us now provide more details of the descriptor. The
responses from level 1 and level 2 of the scalogram were
used. As can be observed in Fig. 5, these two levels provide
most of the variability in the responses and at the same
time allow our feature vector to be reasonably short. This
is due to the fact that we are taking wavelet responses for
the coarsest scales. The first and the second level provides
17 and 28 responses, respectively. Therefore, the number of
features for the DWT descriptor is equal to (level1 resp. +
level2 resp.)×6 signals = (17 + 28)×6 = 270 features,
comparing to 120 features for FFT.

Having the feature vector for each step, the learning
procedure was performed using Support Vector Machines
(SVM) with C-Support Vector Classification and radial basis
function of degree 3. The library that was used is the
LIBSVM [29]. For each terrain type and a given robot step
size, we used 30 steps for learning and 10 steps for testing.
Given that we performed learning for all the five terrain
types in our experiments, this sums up to 150 steps for
learning and 50 steps for testing. Based on the knowledge
about the influence of the speed of the movement on the
classification process [16], [30] we have performed two types
of experiments. In the first one, classification is performed
separately for each step size. In the second one, all the steps
are put into a large training and testing set. The outcome of
these two approaches is described in the results section.

C. Locomotion Energy and Stability Analysis

Given the present control method of our robot, without
a real-time gait regeneration or the ankle admittance con-
trollers, the only parameter that we can control is the step
length. The major factors that can quantify the locomotion
performance are the energy cost and the stability of lo-
comotion. These topics will be addressed in the following
paragraphs.

1) Energy Expenditure: Since the robot’s embedded joint
torque sensors were not functional during the experiments
and we also did not have an access to the motor cur-
rent data, we performed the energy analysis in simulation
(GAZEBO [31]). At this point, since the terrains were rela-
tively thin, we assumed that the energy consumption due to
different terrains will be negligible, compared to the energy
consumption due to the locomotion time. We computed the
total energy expenditure of the robot when it walks 0.5m with
various step sizes x ∈ A = {0.02, 0.04, 0.06, 0.08, 0.1}m. To
calculate the overall energy that is consumed for each step
size we used the following formula:

ex =

n∑
i=1

|τT
i | · |∆qi|, for n =

tx
∆t

(1)

where, τ is the vector containing all the joint torques, ∆q is
the joint space displacement, tx is the duration of locomotion
for the individual step length x and ∆t is the sampling
time. We performed the calculation for all the step sizes and
obtained the following energy costs (expressed in J), from
the shortest to the longest step size:

e = [2507, 1328, 1084, 1062, 747]J (2)

We can clearly notice that the energy expenditure de-
creases with the step size. This is expected, as the smaller
the step size is, the longer it takes for the robot to reach the
0.5m goal.

2) Stability: To evaluate the locomotion stability, we
should ideally compare the estimated CoM position and
velocity to their references. However, the proper state es-
timator implemented was not available on the robot during
experiments. Therefore, we focused on the analysis of an
error between the measured ZMP position and its reference
coming from the gait pattern generator. While performing
experiments we noticed that the robot was much less stable
when walking on terrains number: 3 (grass carpet) and 5
(wood on grass carpet). We verified the average ZMP error
for different terrains, but we didn’t manage to find any
correlation between the error and the terrain type or the
step size. Analysis of the standard deviation (SD) of the
ZMP error has shown, however, a clear relation between
the terrain type and the increase in the ZMP error variation,
which confirms the visually observed stability degradation.
Examples of the ZMP error standard deviation for terrains
number 1 (solid ground) and 5 (wood on grass carpet)
are presented in Fig. 6. We can notice a clear correlation
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Fig. 6. Standard deviation of the ZMP error for the sagital and corronal
plane for various terrains: a) terrain 1 (solid ground), b) terrain 5 (thin wood
on the single layer grass). One can notice a clear correlation between the
step size increase and error increase in terrain 5.



between the step size and the ZMP error standard deviation.
The correlation matrix between the SD of the ZMP error
in sagittal and coronal plane, and the step size for all the
terrains is presented in Table I. A correlation between the

Terrain type
1 2 3 4 5

Direction Sagittal 0.88 0.77 0.96 0.95 0.99
Coronal 0.91 -0.27 -0.18 0.97 0.65

Stab. Ind. 0.036 0.033 0.053 0.044 0.057

TABLE I
CORRELATION MATRIX AND FINAL STABILITY INDICATOR.

step size and the SD of the ZMP error on its own does not
sufficiently reflect the stability of the locomotion, since it
only indicates whether the SD of the ZMP increases with
the step size. To solve that, we multiply the correlation
value with the maximum SD value of the ZMP error, for a
particular terrain and body plane. From the resultant values
we choose the maximum one for the particular terrain and use
it as an indicator of how the stability decreases when step
size increase in particular terrain type. The bottom line in
Table I contains the values for each of the terrain types. The
higher the value is, the more unstable the system becomes
when the step size increases. We can clearly see that the
largest value is for the terrains number 3 (grass carpet) and
5 (wood on grass carpet), which coincides with the visual
observation. In the further considerations we will denote as
s the vector that contains these values.

D. Link Between Terrain Identification and Locomotion

Given that we are able to identify the terrain on which
the locomotion takes place (Sec. III-B), we can use this
information to optimise the locomotion stability and energy
expenditure. The optimisation problem can be defined as
follows:

min
i=1,..,5

Ft(i) (3)

The objective is to find a step index i that will minimise the
cost function F for the particular terrain t. The cost function
components are the normalised step size dependent energy
expenditure ∗e and the terrain type dependent stability indi-
cator ∗s. The normalisation is performed with respect to the
maximum component of each vector.

∗st =
st

max(s)
, for t = 1, .., 5 (4)

∗ei =
ei

max(e)
, for i = 1, .., 5

The cost function for each terrain t has the following form:

Ft(i) = KE · ∗ei + KS · ∗st · xi (5)

where, KE and KS are weights of energy and stability
components of the cost function, respectively.

2 cm 4 cm 6 cm 8 cm 10 cm
Fast Fourier Transform

precision 81.49% 90.96% 84.00% 80.10% 74.95%
recall 80.00% 90.00% 82.00% 76.00% 76.00%

Discrete Wavelet Transform
precision 90.55% 86.11% 77.50% 84.05% 89.14%
recall 87.50% 85.00% 77.50% 82.50% 86.00%

TABLE II
CLASSIFICATION RESULTS FOR DIFFERENT STEP SIZES.

IV. RESULTS

Having described in detail the classification methodology
along with the locomotion energy and stability analysis,
we now present the results for each one of them. We
then conclude with a discussion on the gait (i.e. step size)
adaptation, based on the classification and the locomotion
performance analysis.

A. Classification Results

Following the procedure described in Sec. III-B, we
present and compare two classification approaches. The first
one assumes that for each step size, a separate classifier will
be used. For the testing set, the precision and recall results of
this approach are presented in Table II. For the FFT case, the
worst classification result is obtained for the largest step size
and the best one for the 4cm step length. For the DWT case,
the worst classification result is obtained for the 6cm step
size and the best one for the 2cm step length. The obtained
results of 82.30% mean precision and 80.80% mean recall
for the FFT approach, as well as the 85.47% mean precision
and 83.70% mean recall for the DWT approach, are close to
the state-of-the-art in terms of tactile terrain identification.
These values could be related to the results obtained for a
six-legged robot [23], where the precision is 86.11% and the
recall 90.70% (for 12 terrains), as well as for a quadruped
robot [24], where the precision is 87.07% and the recall
86.81% (for 11 terrain types).

For the second approach, the feature vectors for all the
step sizes were included in a single learning set (i.e. 600
steps), while the rest were used for the testing set (i.e. 200
steps), for which we used four-fold cross-validation. The
obtained results for this procedure are as follows. The mean
precision is 91.01 ± 1.94% and the mean recall is 90.75 ±
1.94% for the FFT approach, while the mean precision is
95.16± 0.80% and the mean recall is 95.00± 0.82% for the
DWT approach. Following the second approach leads to an
significant increase in the classification rates compared to the
previous one, reaching very high precision and recall values.
Moreover, the results for the DWT approach are better than
the state-of-the-art ones (even though different F/T units,
robots (2 vs 4/6 legs), and terrains were used in each work).
The confusion matrix for the selected test data is shown in
Fig. 7.

Further analysis of the results is given in Table III. It can
be observed that the most challenging terrain for the FFT
approach is the artificial grass carpet (terrain 3), while the
one that is easily recognisable is the solid ground (terrain 1).



Fig. 7. Confusion matrix for all terrains and step sizes used in a single
learning process based on: FFT features (a) and DWT features (b).

ground carpet grass wood woodOnGrass
Fast Fourier Transform

precision 100.00% 85.19% 87.50% 94.23% 88.24%
recall 90.00% 92.00% 84.00% 98.00% 90.00%

Discrete Wavelet Transform
precision 97.56% 95.12% 92.68% 93.33% 100.00%
recall 95.24% 92.86% 90.48% 100.00% 100.00%

TABLE III
CLASSIFICATION RESULTS FOR EACH CLASS SEPARATELY.

For the DWT approach the performance for terrain 5 is the
best and for terrain 3, similarly to the FFT, is the worst.

B. Stability & Energy Results

Using the cost function in Eq. (5), described in Sec. III-
D, we can tune the weights to balance between the energy
and stability of locomotion on various terrains. Fig. 8 shows
the cost function values for all of the five terrains, for three
different combinations of the KE/KS ratio. The high ratio
prioritises the energy consumption by increasing the cost
with the step decrease, while the lowest ratio prioritises the
stability of locomotion by increasing the cost for bigger
steps. We can see that the latter increase in the cost function,
due to the increase in the step size, depends on the stability
indicator s. We noticed that KE = 2.5 and KS = 10 weights
give a reasonable trade off between the two factors. For these
weights, the resultant step size was 0.1m for the terrains 1,
2, and 4 and 0.06m for terrains 3 and 5. For this combination
of step sizes the maximum SD of the ZMP is below 0.047m
and the energy expenditure of walking for a distance of 0.5m
is below 1084J. To compare, for KS = 2, for all the terrain
types, the optimal step size is 0.1m, giving the best energy
efficiency, but the worst stability. On the other hand, for
KS = 40, the optimal step size for all the terrain types
is 0.04m, which is thus optimising the stability, but not the
energy efficiency.

C. Discussion of the Results

From the locomotion point of view we provided a tool
that let us quantify the stability of locomotion on various
types of terrains in an easy way and later use it to select
gait parameters (in our case it is the step size) that optimise
at the same time both the energy and the stability of the
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Fig. 8. Comparison of cost functions for all five terrains for different sets
of KE and KS weights. In all the graphs KE = 2.5, while the ratios
KE/KS are: a) 1.25, b) 0.25 and c) 0.06.

locomotion. The two weights of the cost function provide a
simple way to tweak the importance of the two factors.

Unfortunately, because of the lack of a robot state es-
timator, we were not able to analyse the CoM trajectory,
which perhaps could be a better indicator of the long term
locomotion stability. We are leaving this as a future work.

From the terrain identification point of view we were
able to provide reliable results with high classification ratio,
which surpass the state-of-the-art methods for different walk-
ing platforms, but on a smaller set of terrains. The boost of
performance, when using data for all step sizes in one large
learning set, is noticeable. The possible explanation to this
fact is that the machine learning algorithm (SVM) has more
data and provide better separation of the classes.

Dependable classification results provide the locomotion
controller with the information needed for stable, yet energy
efficient locomotion. In our work, unlike other approaches
such as in [2], [10], [11], [12] where the terrain type was
assumed, we are providing this information to the system.

V. CONCLUSIONS

In this paper, we first proposed an accurate terrain clas-
sification method, which outperforms the state-of-the-art
approaches. It uses SVM learning to identify the type of
a terrain, based on force/torque data acquired from the
robot’s ankle sensors and a signal descriptor formed using the
Discrete Wavelet Transform approach. For each terrain type



and step size we performed a locomotion energy/stability
analysis to identify the right step size for each terrain that
balances the energy expenditure and the locomotion stability.

The work presented in this paper is a first approach to
the longer research effort focused on two crucial aspects of
robotic locomotion:

• To identify on-line ground mechanical properties, such
as stiffness and damping.

• To modulate in real-time the gains of the ankle admit-
tance and the ZMP stabilising controller, based on the
identified mechanical properties of the terrain. This will
allow the robot to accommodate with big changes in the
ground properties and walk on much broader range of
terrains.

On the other hand, inspired by the very good classification
results from F/T sensor signals we plan to extend this work
to a broader set of terrain types, including more challenging
ones, such as sandy or rocky ones. Moreover, the visual range
or lidar sensing will be used together with the F/T readings.
The focus will be on a further improvement of the terrain
classification methods, inluding data fusion techniques. Last
but not least, other types of gait adaptation will be consid-
ered, such as the stiffness of the active compliant joints.
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