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Abstract— State-of-the-art sensorimotor learning algorithms,
either in the context of reinforcement learning or imitation
learning, offer policies that can often produce unstable behav-
iors, damaging the robot and/or the environment. Moreover, it is
very difficult to interpret the optimized controller and analyze
its behavior and/or performance. Traditional robot learning,
on the contrary, relies on dynamical system-based policies that
can be analyzed for stability/safety. Such policies, however, are
neither flexible nor generic and usually work only with propri-
oceptive sensor states. In this work, we bridge the gap between
generic neural network policies and dynamical system-based
policies, and we introduce Autonomous Neural Dynamic Policies
(ANDPs) that: (a) are based on autonomous dynamical systems,
(b) always produce asymptotically stable behaviors, and (c) are
more flexible than traditional stable dynamical system-based
policies. ANDPs are fully differentiable, flexible generic-policies
that accept any observation input, while ensuring asymptotic
stability. Through several experiments, we explore the flexibility
and capacity of ANDPs in several imitation learning tasks
including experiments with image observations. The results
show that ANDPs combine the benefits of both neural network-
based and dynamical system-based methods.

I. INTRODUCTION

Choosing the appropriate policy structure is crucial for
effective and practical robot learning [1], [2], [3]. Currently,
either in the context of Reinforcement Learning (RL) [4] or
Imitation Learning (IL) [5], the standard choice is to use
Neural Networks (NNs). NNs possess the flexibility needed
to learn complicated behaviors as well as the generalizability
required to be able to run the same algorithms in any robot
or scenario. NN-based policies, however, are black-box and
cannot guarantee well-behaved trajectories. In other terms,
we cannot anticipate how a NN-based policy will behave
when faced with an unforeseen situation. As a consequence,
most RL algorithms often attempt behaviors that are harmful
to the robot and/or the environment, especially in the initial
stages of the learning process.

*Both authors contributed equally to this research.
1 D. Totsila is with Inria, CNRS, Loria and Université de Lorraine,
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Fig. 1. Autonomous Neural Dynamic Policy Outline.

This comes in contrast with traditional robot learning
literature [6], where usually in the context of IL/Learning
from Demonstrations (LfD) the policy behavior is shaped
according to some well-defined criteria. For example, pro-
ducing behaviors that are guaranteed to asymptotically con-
verge to an attractor is an important concept of traditional
robot learning [6], [7]. The main building tool for this is a
Dynamical System (DS), and the main idea is to represent
the policy to be learned as a DS. This gives us the ability to
reason about the policy in terms familiar to control theory
and make proofs about properties that we care about (e.g.,
for asymptotic stability) [7]. This concept has been explored
in robotic scenarios with two main different approaches: (a)
time-dependent DSs that mostly fall under the framework
of Dynamic Movement Primitives (DMPs) [8], [9], [10],
and (b) autonomous DSs where the input is only dependent
on the current state [11], [7]. Both approaches can pro-
vide asymptotic stability guarantees, while autonomous DSs’
reactiveness does not depend on time. Traditionally, both
approaches have been utilized mainly in Imitation Learning
(IL)/Learning from Demonstrations (LfD) scenarios [12],
[13], [14], [15], [7], [16], but recently there was an attempt
to use DMPs with RL [17], [18].

For the context of this work, the “ideal” policy repre-
sentation for effective robot learning: 1) Produces behav-
iors that are guaranteed to asymptotically converge to an
attractor; 2) Is general purpose, i.e. it can be used with
any robot/embodied agent; 3) Can accept any observation
space (e.g. RGB images), and the input is not limited only
to the feedback of robot states. The first characteristic is
important for robotic applications since it ensures that the
policy outside of the trained data will not perform unstable
and unpredictable behaviors, but will try to go towards
the attractor. Even if this feature cannot guarantee that
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the robot will never try anything harmful (e.g., very big
velocities), it is a good stepping stone towards having safe
robot behaviors. The second characteristic is important as
it will make the policy usable by any robotic mechanism
and any scenario. The last characteristic is vital for practical
robotic applications since traditionally policies that provide
stability guarantees are not straightforward to use with states
different from the proprioceptive sensor states.

To create a policy that has the above characteristics we
take inspiration from the LfD literature and the usage of DSs,
attempt to combine them with the representation abilities of
NNs, and: 1) We assume that the state of the system can
be split into two parts: (a) a part that is directly controlled
(e.g., joint positions), and (b) a part that can only be observed
and/or indirectly controlled (e.g., a box); 2) We represent the
policy as a non-linear combination of linear systems, allow-
ing us to ensure stability while leveraging neural networks
to effectively combine the elementary dynamical systems.
Our novel type of policies is called Autonomous Neural
Dynamic Policies (ANDPs) and they: (a) are based on dy-
namical systems, (b) are generic policies, (c) are using neural
networks, (d) do not depend on time (thus, autonomous),
and (e) can learn from a handful of demonstrations. The
main novelty of ANDPs lies in their ability to accept any
input space (even images), while still being able to produce
asymptotically stable behaviors for the controllable state.
This is achieved by imposing constraints on the elementary
linear DSs while making the policy expressive by using NNs
to combine them. Finally, we perform reparameterizations
to “eliminate” the constraints, and optimize ANDPs using
unconstrained gradient-based optimization.

II. RELATED WORK

The choice of the policy structure plays an important role
in the effectiveness of learning in practical robot applications.
When designing the policy structure, there is always a trade-
off between having a representation that is expressive, and
one that provides a space that is efficiently searchable [2].

A straightforward approach to ensure the policy is easily
found and defined is to design it manually. For example,
In [19], the authors design a policy for a ball acquisition
task by hand, which has only four parameters. This low-
dimensional policy can be easily optimized, but with only
four parameters it might not possess big expressiveness.
Moreover, if we are faced with a different robot/task, we need
to re-design the policy from scratch. On the other hand, using
a function approximator (e.g. a neural network) to describe
the policy, enables us to easily increase the expressiveness
of the policy, but can make the policy optimization difficult.

Numerous works describe best practices and policy struc-
tures that ease the learning process. In [3] the authors thor-
oughly evaluate different action spaces (with the correspond-
ing low-level controllers, and thus policy structures) in a wide
range of scenarios. They conclude that operating in end-
effector space combined with low-level controllers makes
the learning process faster, more robust, and provides easier
transfer from simulation to the physical world and between

robots. The authors in [1] reach similar conclusions in a
related study that performs a comparison between different
action spaces for manipulation tasks. Overall, it is clear that
in order to learn effectively in practical robotic applications,
we need a structured policy representation.

Dynamic Movement Primitives (DMPs) [8], [9], [10]
provide a framework for structured policy types that are
a dynamical system. As such, we can insert desired prop-
erties that can make our system behave in specific ways.
DMPs are split into two systems: (a) the canonical system
(which is usually a springer-damper system), and (b) the
transformation system. The canonical system represents the
movement phase s, which starts at 1 and converges to 0 over
time. The transformation systems combine a spring-damper
system with a function approximator (e.g., NNs) which,
when integrated, generates accelerations. Multi-dimensional
DMPs are achieved by coupling multiple transformation
systems with one canonical system. DMPs can be used
in the end-effector and the joint angle space. There are
numerous successful implementations of DMPs mainly in
IL/LfD scenarios covering a wide range of tasks [10], [14],
[13] and even multi-task cases [12], [20].

DMPs, however, are time-dependent and thus they may
produce undesirable behaviors; for example, a policy that
cannot adapt to perturbations after some time. Stable Es-
timator of Dynamical Systems (SEDS) [7] explores how
to use dynamical systems to define autonomous (i.e., time-
independent) controllers (or policies) that are asymptotically
stable. The main idea of the algorithm is to use a finite
mixture of Gaussian functions (Gaussian Mixture Models -
GMMs) as the policy, ξ̇ = πseds(ξ), with specific properties
that satisfy some stability guarantees. SEDS, however, re-
quires demonstrated data to optimize the policy (i.e., data
gathered from experts), although similar ideas have been
used within the RL framework [21]. SEDS and its vari-
ants [15], [22] have provided effective solutions to difficult
tasks ranging from point-to-point motions [7] to humanoid
navigation [23] and following force profiles [16]. One of
the main limitations of SEDS is the accuracy vs. stability
dilemma, i.e., it performs poorly in highly non-linear motions
that contain high curvatures or that are non-monotonic. This
is mainly because of the constraints SEDS imposes on the
structure of the GMMs. Recent variants of SEDS, and in
particular LPV-DS [15], [22], attempt to relax the constraints
by disconnecting the learning of the weighting function from
the elementary DSs; LPV-DS still uses GMMs though.

Recently, Bahl et al. [17] proposed a method to combine
neural networks with DMPs. The main idea is to create a
high-level controller with NNs that takes as input an unstruc-
tured state and selects parameters of a DMP that acts as the
low-level controller. Their method, called Neural Dynamic
Policies (NDPs), was able to effectively learn multiple LfD
and RL scenarios. In a recent extension [18], the authors
provide a hierarchical formulation of their method that can
be used to solve more complex tasks. To the best of our
knowledge, this work proposes one of the first methods
that effectively combines NNs with DSs and provides the



first general-purpose policy (i.e., it can be used with almost
any input and any robot) that is based on DSs. However,
since their policy changes the dynamical system every X
steps there are still no theoretical guarantees for stability,
but mostly rely on the data-driven capabilities of the NNs to
capture this type of behavior.

In this paper, we take inspiration from LPV-DS and
NDPs and provide a policy structure, called Autonomous
Neural Dynamic Policies (ANDPs), that (a) always produces
asymptotically stable behaviors for the controllable part of
the state, and that (b) is a general purpose policy that can
accept arbitrary action space and inputs (e.g., images).

III. PROBLEM FORMULATION

We assume discrete-time dynamical systems that can be
described by transition dynamics of the form: xt+1 =
f(xt,ut)+w, where the system is at state xt ∈ RE at time t,
takes control input ut ∈ RU and ends up at state xt+1 at time
t+ 1, w is i.i.d. Gaussian system noise, and f is a function
that describes the unknown transition dynamics. We assume
that the system is controlled through a parameterized policy
u = π(x|θ) that is followed for M steps (θ are the policy
parameters). When following a policy for M time-steps from
an initial state distribution p(x0), the system’s states and
actions jointly form trajectories τ = (x0,u0, . . . ,xM−1),
which are often also called rollouts.

In this work, we define a novel policy structure and
learning procedure (called ANDPs) with stability guarantees.
ANDPs can work in both IL/LfD settings as well as RL
scenarios, but in this manuscript we focus on the first type
of scenarios. In an imitation learning scenario, we assume ac-
cess to a few demonstrated trajectories {τ i}i=1,...,K , and we
want to find the policy parameterization θ that “mimics” the
demonstrated trajectories as well as possible. In this work,
we assume having access only to the states of the system, xt,
and not to the control signals, ut. In other words, we have
trajectories {si}i=1,...,K of the form s = (x0, . . . ,xM−1).
This makes the problem slightly more difficult and usually
enforces the use of a low-level controller [24].

IV. PROPOSED POLICY STRUCTURE

We make the assumption that the state of the system
can be split into two parts: (a) a part that can be directly
controlled (e.g., positions and velocities of the end-effector),
and (b) a part that can only be observed and/or indirectly
controlled (e.g., obstacles/objects). In particular (we omit the
time notation, t, for clarity):

x =

[
xc

xnc

]
∈ Rdc+dnc , (1)

where xc is the part of the state that can be directly controlled
and xnc is the part of the state that can only be observed. dc
and dnc are the state-space dimensions for the controllable
and non-controllable parts, respectively (dc + dnc = E). We
define the control policy as a dynamical system with a fixed
attractor x∗

c (formulated as a weighted sum of linear DSs):

ẋc = π(x) =

N∑
i=1

wi(x)Ai

(
x∗
c − xc

)
(2)

where N denotes the number of elementary dynamical
systems, wi(x) ∈ R are state-dependent weighting functions,
and Ai ∈ Rdc×dc , x∗

c ∈ Rdc . The number of the elementary
dynamical systems, N , is essentially a hyper-parameter for
the policy. It is evident that as the complexity of movement
grows, the required number of dynamical systems may
increase. However, it is important to note that unlike SEDS,
and most of its variants, we do not need to keep increasing N
to increase the expressiveness of our policy; we can increase
the complexity of the wi(x) functions and keep N small.
Although we could employ a principled way of selecting N ,
the choice of N did not strongly affect the final performance,
and we, thus, leave this exploration for future work.

The control policy, π(x) (Fig. 1), defines the desired
velocity profile that the controllable state xc should follow.
Depending on the state representation one can directly use
the output for commanding the robot, use a PD controller,
or use some inverse dynamics/kinematics model. Note, that
the controllable state xc can also contain velocities (e.g.,
xc = {ξ, ξ̇}, where ξ is the end-effector translation) and in
that case the system is a second order DS. Although in this
work we explore first-order DSs, our formulation allows for
second-order DS systems.

Theorem 1: Assume that the controllable part of a state
trajectory follows the policy as defined in Eq. 2. Then, the
function described by Eq. 2 is asymptotically stable to x∗

c if{
Ai +A

T
i ≻ 0 the symmetric part of A is psd

wi(x) > 0, i = 1, .., N,∀x ∈ RE
(3)

Proof: The dynamical system of Eq. (2) can be re-
written as follows:

ẋc = π(x) = g(xc,xnc) (4)

where g(xc,xnc) =
∑N

i=1 wi(xc,xnc)Ai

(
x∗
c − xc

)
.

Therefore,to prove the stability of the controllable part of
the state, we follow a Lyapunov stability analysis and we will
use the Control Lyapunov Function (CLF) theory [25], [26],
[27], [28] that states: A dynamical system that is governed
by the dynamics of Eq. (4), with state xc and control inputs
xnc, is globally asymptotically stable at the point x∗

c if there
exists a continuous and continuously differentiable Lyapunov
function V (xc) : Rdc → R such that:

(a) V (xc) > 0, ∀xc ∈ Rdc ,xc ̸= x∗
c

(b) ∃xnc s.t. V̇ (xc,xnc) < 0, ∀xc ∈ Rdc ,xc ̸= x∗
c

(c) V (x∗
c) = 0

(d) V̇ (x∗
c ,xnc) = 0, ∀xnc ∈ Rdnc

(5)
Since in our case xnc is not a control input, but we can

just observe it, we go one step further and require Eq. 5b
to hold for all xnc (i.e., ∀xnc ∈ Rdnc ). If we can find a
Lyapunov function that fulfills the above conditions, then
the dynamical system defined in Eq. (2) will asymptotically
converge to x∗

c , that is: limt→∞∥xc − x∗
c∥ = 0.



We propose the following Lyapunov function:

V (xc) =
1

2
(xc − x∗

c)
T (xc − x∗

c). (6)

The derivative of the proposed Lyapunov function can be
calculated as (the attractor is fixed and thus ẋ∗

c = 0):

dV

dt
= V̇ (xc,xnc) =

dV

dxc

dxc

dt
+
�
�
��

0
dV

dxnc

dxnc

dt

=
1

2

(
ẋT
c (xc − x∗

c) + (xc − x∗
c)

T ẋc

)
(7)

It easy to see that V (xc) > 0 (because of the quadratic
form), V (x∗

c) = 0 and V̇ (x∗
c ,xnc) = 0, ∀xnc. For satisfying

Eq. 5b, we substitute Eq. (4) into the above and get:

let e = xc − x∗
c ,

V̇ (xc,xnc) =
1

2

(
(

N∑
i=0

wi(xc,xnc)Ai(−e)Te

+ eT (

N∑
i=0

wi(xc,xnc)Ai(−e)
)

=
1

2

(
eT

N∑
i=0

−wi(xc,xnc)A
T
i e

+ eT
N∑
i=0

−wi(xc,xnc)Aie
)

=
1

2

(
eT

N∑
i=0

wi(xc,xnc)︸ ︷︷ ︸
> 0

(
AT

i +Ai︸ ︷︷ ︸
≻ 0

)
e
)

=− 1

2

(
eT

N∑
i=0

wi(x)︸ ︷︷ ︸
> 0

(
AT

i +Ai︸ ︷︷ ︸
≻ 0

)
e
)

<0.
(8)

The above holds for (AT
i + Ai) ≻ 0 and wi(x) > 0, i =

1, . . . , N . We remind the reader that a positive definite matrix
P ∈ Rn×n satisfies the condition xTPx > 0,∀x ∈ Rn.
The results of the above theorem can be described as “The
controllable part of the system will always converge to the
fixed attractor x∗

c”. Although this does not guarantee that
the whole system state will converge to a desired state,
this is an important property for a policy, as it will always
generate commands that will eventually drive the controllable
part of the system to a stable point. It is important to
note that this property holds if the controllable system can
follow the commanded velocities perfectly, and does not
take into account the properties of a possible low-level
controller (e.g., a controller based on the pseudoinverse of
the Jacobian for end-effector control) or the rest of the
environment. This is, however, common in the LfD literature
since designing a policy that can guarantee the stability of
the whole system and take into account the properties of the
low-level controller is a challenging task and would require
bulk approximations to be made [2], [24]. Nevertheless, in
all of our experiments, we never observed diverging motions

and we did not have to tune the low-level controllers to avoid
such situations. Overall, these limitations do not seem to have
a big impact on the resulting behaviors and we were able
to learn a wide range of motions using different low-level
controllers (in joint- and task-space).

It is important to emphasize that the decision to work
in Euclidean space for developing stable controllers is ar-
bitrary. Our methodology—splitting the state into control-
lable and uncontrollable parts and using neural networks to
learn weighting functions—remains applicable even when
leveraging more advanced mappings, such as those using
manifolds [29] or Laplacian Eigenmaps [30].

A. ANDPs via Neural Networks

To be able to represent the ANDPs (Eq. 2) with a neural
network, we have to: (a) find the “learnable” parameters,
(b) make sure that the policy is fully differentiable, and (c)
handle the constraints of Eq. 3 properly.

To define the learnable parameters, we need to identify pa-
rameters of Eq. 2. First, the matricesAi do not depend on the
state, and thus we can directly optimize for their parameters.
Second, to define each wi(x), we use one neural network for
all of them. More concretely, we define a neural network Ψ
which takes input a full system state x and predicts a vector
W ∈ RN . In other words, W = Ψ(x|ψ), where ψ are the
parameters of the neural network. The i-th element of the W
vector represents wi(x). So, the total learnable parameters
of the policy are θ = {A1, . . . ,AN ,ψ}. It is easy to see
that since each Ai is a simple matrix, and ψ parameters of
a neural network, the whole policy is fully differentiable.

One can also add the attractor point, x∗
c , to the optimiza-

tion variables. The policy would still be differentiable (x∗
c

is a free parameter). In RL scenarios, adding the attractor
point to the optimization variables is mandatory, in order
to let the algorithms identify the underlying behavior. In our
experiments, however, we observed that in IL/LfD scenarios,
it would require a complicated loss function, and thus we left
this exploration for future work. In this paper, we assume a
fixed attractor that is equal to the average of the last points
of all the demonstrated trajectories.

The final component involves optimizing the parameters
θ in accordance with a specific objective function, while
satisfying the constraints outlined in Eq. 3. In the general
case, this would require a constrained optimization problem
to be performed, but this can be challenging to do for high-
dimensional parameter spaces, such as the ones generated
by neural networks. To bypass this issue but still respect the
constraints, we perform the following steps:

• First, each wi should be positive. We can easily generate
positive numbers by adding an exp layer after the last
layer of Ψ. In this work, we always use a softmax layer
as the last layer of Ψ that generates positive values that
sum to one; it also makes more sense as we want to
combine the elementary DSs that Ai define.

• We, now, need to satisfy the constraint Ai +A
T
i ≻ 0.

If we assume real matrices and define Ai = Bi+Ci−
CT

i , where Bi is a symmetric positive definite matrix



(no restrictions for Ci), we can see that Ai + A
T
i =

Bi + Ci − CT
i + Bi + CT

i − Ci = 2Bi ≻ 0. Bi

is symmetric, thus Bi = BT
i , and Ci − CT

i defines
a skew symmetric matrix. This gives us the ability to
freely optimize for the parameters of Ci. So, we are left
with handling the case of optimizing for a symmetric
positive definite matrix, Bi.

• If we assume real matrices, a symmetric positive definite
matrix Bi can be factorized as Bi = LiL

T
i (Cholesky

decomposition), where Li is a lower triangular matrix
with real and positive diagonal entries. It is easy to
see that we can optimize for the parameters of Li and
reconstruct Bi that we need.

Using the above steps we can now perform unconstrained
optimization while still ensuring that the constraints in Eq. 3
are fulfilled. This is important as we are more confident that
the optimization will converge to good solutions, and that
the learning process will converge in few epochs/iterations.
B. Training ANDPs for Imitation Learning

Training ANDPs for IL/LfD scenarios is quite straightfor-
ward. Given a set of demonstrated trajectories {si}i=1,...,K ,
we create a dataset of the form x→ ftarget(x) = ẋc.

Limitation(θ) =
∑
x

∥π(x|θ)− ftarget(x)∥2 (9)

Using Limitation as the loss function, we can train the pa-
rameters θ of the policy to mimic the behavior of the
demonstrated trajectories.

V. EXPERIMENTS & RESULTS

In this section, we want to show the ability of ANDPS to
work in LfD scenarios. Through the conducted experiments,
we attempt to answer the following questions:

1) How do ANDPs compare to classical LfD and pure
NN approaches? Do ANDPs produce stable behaviors?
How well can they reproduce the demonstrations?

2) Can ANDPs learn complex movements for a realistic
robotic task? Are they robust?

3) Can ANDPs accept arbitrary inputs like 3D orienta-
tions? Can they accept even raw images?

4) Can ANDPs work on a physical robot?
To answer the first question, we use the LASA handwritten

open-source dataset 1 that contains multiple 2D movements.
The dataset provides a wide range of movements (from
simple lines to quite complicated shapes) which allows
us to identify the modeling capabilities of different policy
structures. The 2D space allows even simple policies to
be trained extensively, serving as a useful benchmark for
LfD techniques. We provide a quantitative and qualitative
analysis of ANDPs as well as an extensive comparison with
SEDS [7], and unstructured neural network policies. SEDS
and its variants are the main representatives of LfD methods
based on autonomous DSs. We do not compare to newer
SEDS variants as the main advantage of ANDPs lies in
the usage of neural networks instead of GMMs, and many

1https://github.com/justagist/pyLasaDataset

of these improvements to SEDS can be applied to ANDPs
analogously. The comparison with NNs serves as a baseline
to showcase the need for stability guarantees.

To answer the second and third questions, we devise a
multi-task scenario where the goal is to show that ANDPs
are capable of learning multiple tasks, for example complex
robotic movements, into one policy; we use the RobotDART
open-source simulator [31], [32]. The idea is to use the non-
controllable part of the state xnc to ”define” which task we
want the robot to perform. So for each task, xnc is an image
captured with a camera that is mounted to the robot’s end-
effector and points directly to a sign that displays the picture
that corresponds to the particular movement. We also test the
reactiveness of ANDPs by changing the image in the middle
of the evaluation pipeline, and the robustness of the learned
policies by inserting force perturbations.

To answer the fourth question, we devise the following
2 experiments: We use a physical Franka Panda robot to
collect three demonstrations with kinesthetic guidance for a
pouring task and learn a policy with data collected from a
physical setup. In this task the robot needs to pour liquid
from one cup into a bowl and we control the robot in end-
effector space with changing orientation. In the subsequent
experiment, a Go1 robot was utilized to navigate an L-
shaped trajectory, leveraging both its current positional data
and the visual information gathered through the onboard
camera. The goal of this task was to follow as closely as
possible the predetermined path, aiming to arrive at the final
goal point located at the path’s end.

All the videos showcasing the resulting behaviors of the
key experiments, as well as the code for replicating the ex-
periments can be found at https://nosalro.github.io/andps.
A. Imitating 2D Trajectories (Question 1)

The LASA handwritten dataset contains a set of 2D
handwriting motions recorded from a tablet (Fig. 3). For
each motion or task, a human was asked to draw a desired
pattern 7 times, by starting from different initial positions
and ending to the same final point. In total the library
contains 30 human handwriting tasks (with 7 demonstrations
for each task). The goal of this section is to validate how
well ANDPs perform in classical LfD tasks. In other words,
given a set of K demonstrations of the same task, how
well do ANDPs capture the overall shape and reproduce
the original demonstrations? To provide strong evidence that
ANDPs perform adequately, we compare to SEDS2 and
unstructured neural networks. Here, the state is of the form
x ≡ xc = {x, y}, i.e. the state vector contains only the 2D
Cartesian position of the system, and we perform two types
of evaluation: (a) quantitative, and (b) qualitative.

For (a), we generate 35 distinct dataset splits, where
each split consists of 4 demonstrations for the training set
and 3 demonstrations for the test set, covering all possible
combinations of 4 demos for training and 3 demos for testing.
We then average across every trajectory by sliding windows

2We used the official open-source code found in https://
bitbucket.org/khansari/seds.

https://github.com/justagist/pyLasaDataset
https://nosalro.github.io/andps
https://bitbucket.org/khansari/seds.
https://bitbucket.org/khansari/seds.
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Fig. 2. LASA dataset: Aggregated results over all tasks

of length 5, so that the trajectories are smoother3, and cal-
culate the corresponding velocities using ẋct =

xct+1
−xct

dt .
Assuming π(x) to be the learned model and ẋc† to be
the ground truth value, we compute the error as using the
formula from [7]. We aggregate the errors from all tasks. The
results showcase that ANDPs have comparable (and slightly
better) training and test set errors with SEDS and NNs, which
indicates that ANDPs can learn complex functions (Fig. 2).

For (b), we select one learned policy for each task and
perform a forward simulation for each of the starting posi-
tions. In this case we do not provide any feedback, but take
only the first position from the dataset and then rely solely
on the model predictions (via integration x′ = x + v ∗ dt).
The results show that ANDPs and SEDS produce behaviors
that always converge to the attractor, while NNs cannot do
so. ANDPs overall capture the shape of the motion as well
as or better than SEDS (Fig. 3).

B. Imitating Robotic Behaviors (Questions 2 & 3)

In this section, we want to determine whether ANDPs
have the capability of learning intricate 3D motions, demon-
strate the flexibility of ANDPs compared to traditional LfD
methods, and exhibit the reactive and resilient nature of the
learned policy against perturbations. We collect one demon-
stration for each of the following movements: a sinusoidal
motion, a linear motion, and a curvilinear motion so that we
can devise a multi-task scenario where the goal is for ANDPS
to learn multiple tasks into one policy. In essence, we use the
non-controllable part of the state to ”define” which task we
want the robot to perform. To create the labels, we simulate
a sign with the image corresponding to every motion across
the robot, we then attach a camera to the end-effector of
the arm facing towards the sign and we shoot a grayscale
image for every sample. We take all 3 demonstrations and
we have a state of the form: x = {xnc,xc} = {I, x, y},
where I ∈ R64×64 is a grayscale image and xc contains only
the 3D Cartesian position of the end-effector and the output
is the desired velocity profile ẋc that the end-effector should
follow, while a PID Controller is used to keep the orientation
fixed. The robot is controlled through joint commands using
the pseudo-inverse of the Jacobian of the end-effector. The
joint commands are calculated as: θ̇(t) = J†(θ)

[
ẋctα̇(t)

]T
3Smoothing was needed for SEDS as it was producing better results with

smoothed trajectories; ANDPs were more robust to this noise.

where α̇(t) comes from the PID controller that tries to keep
the orientation fixed throughout the trajectory.

We learn one model for all three tasks. In Fig. 4, we
see that ANDPs can learn to distinguish the three tasks
while always ensuring convergence to the fixed attractor.
To highlight the importance of stability guarantees, we train
a CNN-based policy and we conduct comparisons for the
following perturbations applied during evaluation: a) changes
in the non-controllable part of the state, b) external force
application, and c) application of i.i.d. Gaussian noise.

To showcase the broader concept of reactiveness we start
an evaluation run with the image corresponding to the
linear movement displayed, and at t = 2.5 s we switch
the displayed image to the one representing the sinusoidal
movement. We observe that when utilizing ANDPs, the
robot adapts its motion to align with the shape of the
corresponding movement and converges to the fixed attractor.
In contrast, while the simple CNN also modifies its motion,
the end-effector deviates from the target (Fig. 5). To show
that ANDPs are robust and reactive to force perturbations,
we apply an external force to the robot twice during the
execution: once at the beginning of the behavior, and once
at t = 4 s. We observe that the robot can converge to
the attractor and follow the overall shape of the behavior,
whereas the CNN-based policy fails to do so (Fig. 6).

C. Physical Robot Experiments

1) Pouring Task: In this section, we want to identify
whether ANDPs: (a) work with realistic demonstrations,
and (b) can learn a task that requires precision and end-
effector orientation control. For those reasons, we collect
three demonstrations with kinesthetic guidance on the
physical robot performing a pouring task: the robot
holds a cup filled with liquid and needs to pour it inside
a bowl. For safety, we “emulate” the liquid with small
plastic objects. We then learn a policy with ANDPs using
the collected demonstrations with a state of the form x ≡
xc = {x, y, z, rx, ry, rz}, where {x, y, z} is the end-effector
translation and {rx, ry, rz} is the end-effector orientation
expressed in Euler XYZ angles. To apply joint commands
to the physical robots, we convert the EulerXYZ velocities
to angular velocities and then the commands are calculated
using the pseudo-inverse of the Jacobian of the end-effector.
Here it is important to highlight that we choose to learn the
policy in end-effector space to ensure that the learned policy
can seamlessly adapt to any robot, enhancing its versatility
and usability. ANDPs can also work on any arbitrary state
space, like the joint space, as long as the controllable part
of the state forms an Euclidean space.

The results showcase that ANDPs work reliably in this
setting and the robot successfully pours the liquid from the
cup to the bowl. To validate more thoroughly the effective-
ness of the learned policy, we perform 10 replicates with
different initial configurations of the robot and measure the
percentage of the plastic objects that end up inside the bowl.
We get a median percentage of 100% with 67.5% and 100%
for the 25-th and 75-th percentiles respectively.



Fig. 3. Qualitative results for ANDPs, SEDS, and NNs in 4 selected tasks of the LASA dataset.
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Fig. 4. Multi-task scenario with image inputs. All tasks are learned with a single model that can distinguish between tasks given an image input.
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Fig. 6. Comparison of the reactiveness of ANDPs and simple CNNs to
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and t = 4 s.

2) Follow the Line: We perform a second experiment
with a different robot platform to show the versatility of our
proposed method. In this second experiment, we employ a
quadrupedal robot for a visual path-following task: a GO1

Fig. 7. From left to right, screenshots of a successful trial of the pouring
task in the physical setting.

quadruped is required to follow an L-shaped path represented
by the red and blue tape as shown in Fig. 8. To this aim,
we collected 8 demonstrations by teleoperating the robot
using a Remote Control (RC) controller.

We develop a motion policy based on ANDPs, where
the state is defined by x = {xnc,xc} = {I, x, y, θ}.
Here xnc = I ∈ R85×85×3 represents a scaled-down RGB
image obtained from the GO1’s front-facing camera and
xc = {x, y, θ} denotes the plane’s Cartesian coordinates
and the robot’s yaw orientation, which are captured using
Phasespace, an active motion capture system. To evaluate
the effectiveness of the motion policy, we conducted 18
experiments from various starting points. The outcomes, as
depicted in Fig. 9, show that the trajectories generated by the
learned model effectively reach their intended destinations,
closely mirroring the patterns observed during training. The
small regulation errors that can be observed in Fig. 9 are due
to measurement noise and the GO1 high-level controller dead



zone which usually triggers an early stop when the control
action is getting close to to zero.

Fig. 8. From left to right, screenshots of the quadruped performing the
line following experiment.

Follow the Line Experiment on the Go1 via ANDPs

x (m)

y (m)

Fig. 9. A 3-dimensional display of the x, y trajectory collected during
the training (in orange) and the evaluation (in blue ) of the ANDPs policy.
the arrows on the top part of the picture represent the robot orientation in
correspondence with specific x, y locations.

VI. CONCLUSIONS

ANDPs are one of the first policy structures for robot
learning that are general purpose while ensuring asymp-
totic stability of the produced behaviors. Using ANDPs, we
successfully learned diverse tasks with various action space
parameterizations and input types. While our experiments
focused on IL/LfD scenarios, ANDPs are fully differentiable
and versatile, making them applicable to pure RL settings,
which we plan to explore in future work.

Another important feature of ANDPs is their inherent
explainability. Since the underlying policy is a sum of
elementary linear DSs, one can examine the ANDPs via
analytical tools for understanding the reasoning behind the
policy’s decisions. We aim to investigate this in future work.

The main limitation of ANDPs is the reliance on a
fixed attractor, which remains static throughout the episode.
This poses challenges for learning long-horizon tasks and
requires more complex optimization to relax constraints and
allow non-monotonic motions. In future work, we plan to
explore moving attractors or using state-of-the-art mappings
that offer a promising pathway to address this limitation,
enhancing flexibility in motion representation.
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