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Reinforcement Learning Grasping with Force
Feedback from Modeling of Compliant Fingers

Luke Beddow, Helge Wurdemann, Dimitrios Kanoulas

Abstract—Current reinforcement learning approaches for
grasping do not consider force feedback combined with com-
pliant grippers, but these features are suited to grocery object
grasping, where objects can be bruised by high forces, and
exhibit varied weights, textures, and surface irregularities. This
work combines force feedback with reinforcement learning on a
compliant gripper. We design a three degrees of freedom caging
inspired gripper, which can grasp by trapping objects with three
compliant fingers and a movable palm. We instrument the fingers
with strain gauges for force sensing, then model their bending
for simulating grasping at 16.8× real time. Then, we train a
reinforcement learning grasping controller based on in-grasp
force feedback, with real world transfer achieving 98.0% grasp
success rate on training objects, with an average sim2real gap of
3.1%. We demonstrate generalization to 42 novel grocery objects
with a success rate of 95.0%, with 80.1% of grasps tolerating a
5N vertical disturbance. In-grasp finger forces averaged 1.4N and
palm forces 3.0N. We also validate our method with three finger
rigidities, show that our model and in-grasp sensing improve
learning and performance, and compare against three baselines.

Index Terms—Grasping & manipulation; Mechanisms, design,
modeling & control; AI and machine learning.

I. INTRODUCTION

Robotic grasping of varied of objects, with applications
such as logistics or grocery packing, is a significant challenge
for which approaches increasingly apply machine learning
methods, one of the most prominent being reinforcement
learning [1]. Learning methods have in majority been applied
to 1 Degree of Freedom (DoF) suction and parallel-jaw grip-
pers [2], [3]. However, such grippers rely on sufficient surface
forces for grasping, and most approaches do not include
force sensing or feedback, instead determining an appropriate
grasping position based on camera data and then executing a
hardcoded grasping pattern [4], [5]. These approaches are not
suited for applications where contact forces should be limited,
monitored, or used as feedback to react during grasp.

Grocery items, such as fruits and vegetables, have a range of
weights, textures, and surface irregularities which can defeat
suction [6], [7]. They have a challenging range of geome-
tries, for example grasping both limes and punnets of berries
can exceed gripper capabilities [8], and coping with shape
irregularities complicates grasping strategies [6], [9]. Groceries
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can also be bruised and damaged easily, requiring limits on
surface forces. Grocery grippers therefore favour compliance
or variable stiffness [10] to enable material adaptation to
irregular shapes and to inherently limit surface forces.

Reinforcement learning grasping is well suited to grocery
grasping, as the structure of incoming observations allows
force feedback to monitor and react to surface forces [11],
[12]. However, reinforcement learning has not yet been applied
to compliant grippers with force feedback, for two key reasons.
Firstly, integrating contact sensing into compliant grippers
is challenging and remains an active research area [13], as
deformable materials make for poor mounting surfaces and
the high strain requires equally deformable sensors. Secondly,
reinforcement learning approaches usually use simulated train-
ing [14], but simulating compliant contacts with accurate
forces is computationally complex, making it too slow to
use with data-driven simulated training [15]. This complexity
is exacerbated by the majority of compliant grippers using
nonlinear hyperelastic materials like silicone and relying on
friction grasps, which is also challenging to model [15], [16].

The contribution of this work is combining reinforcement
learning with force feedback, resulting from a physics-based
model of compliant fingers, using caging inspired grasping.
We present the significantly updated design of a 3DoF freedom
caging inspired gripper from our previous work [17], that
uses three fingers and a movable palm which can trap objects
inside a cage. We choose a material with linear bending
for our three flexible gripper fingers, stainless steel, which
allows compliant adaptation to objects as well as contact
force sensing via instrumentation with strain gauges. Then, we
apply and validate a mathematical model for large deflection
finger bending enabling compliant contact physics evaluation
in existing robotics simulators at 16.8× real time. We use this
to develop a reinforcement learning approach, trained entirely
in simulation, that effectively transfers to real world grasping,
using force feedback and respecting surface force limits. Our
controller learns to favor caging grasps, where objects are
surrounded and trapped using geometry, not requiring high
surface forces and friction. The result is reliable and stable
grasping across a wide range of objects, with our evaluation
being done on grocery items. Our approach is outlined in
Figure 1. To summarize our contributions:

1) Building on our previous work [17], we significantly re-
design a caging inspired gripper with new actuation and
added embedded in-grasp force sensing in Section III.

2) A reinforcement learning approach for closed-loop
grasping using in-grasp force feedback trained in simula-
tion. The physics-based model of the compliant fingers,
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(a) Real world grasping setup (b) Simulated grasping setup (c) Flowchart of real and simulated grasping using our policy

Fig. 1. Overview of our approach for grasping using compliant fingers and a reinforcement learning policy; a) 3DoF caging inspired gripper mounted on a
robot arm, with all five sensors detailed; b) simulated grasping, with arrows indicating the four grasping actions, and demonstration of the finger bending model;
c) flowchart showing the difference between real world grasping and simulated training, which both generate grasping actions based on state information.

simulated faster than real-time (Section IV), is combined
with the data-driven learning approach (Section V).

3) Validation of: learning and simulation to real (sim2real)
transfer across three finger rigidities, dependent on using
the bending model and in-grasp sensing; generalization
to challenging unseen objects; and comparison against
three baseline controllers; all in Section VI.

We review in detail related literature in Section II, and
present discussion in Section VII, before a final conclusion.

II. RELATED WORK

This section reviews gripper designs and reinforcement
learning approaches, before discussing simulator capabilities
and modeling of large deflection cantilevers. For discussion of
caging grasping, please refer to our previous work [17].

A. Grippers for Grocery Picking

Commercial logisitics grippers frequently rely on suction
grasps, for example Amazon Sparrow, Ocado’s Kindred Auto-
grasp, and Righthand Robotics RightPick; the latter two then
stabilizing grasps with fingers. However, using suction on fruit
and vegetables items is difficult [6], [7], they rarely have flat
surfaces and exhibit varied surface texture.

Research into grippers for grocery picking focuses on con-
trolling stiffness, usually leveraging compliant materials which
can adapt to irregular shapes and inherently limit contact
forces to avoid bruising. A systematic review of 64 current
grippers [10] found half used compliance or deformation,
including 8/10 highlighted for delicate or food applications.
Compliant elastomer fingers which deform when actuated to
curl and surround objects have been presented for delicate
handling [28], but required finite element method (FEM)
for modeling the complex deformation. The present work
proposes flexible steel fingers rather than elastomers, applying
a model to characterize their bending in robotics simulators.

Mnyusiwalla et al. [8] benchmarked four grippers for gro-
cery bin picking, all of which used compliance. Grasping

success rates in low clutter ranged from 55.6−75.6%. Angelini
et al. [7] remarked that varied grasping approaches could
improve grocery grasping, based on experimental evaluation
of their 1DoF gripper, which used the same approach for
all objects. The 8DoF DLR CLASH Hand [9], designed for
grocery picking, uses antagonistic pairs of motors to achieve
variable stiffness. This complexity of actuation enables diverse
grasping strategies, but at a cost of control complexity. Hence,
reinforcement approaches more commonly use 4DoF grippers
or less (see Table I), and higher DoF methods have applied
dimensionality reduction [27] or human demonstrations [26].

Integrating tactile sensing into compliant grippers is chal-
lenging, as sensors may be required to cope with large
deformations, non-rigid mounting, or in-situ manufacture [13].
Highly deformable strain gauges based on liquid metal [29],
hydrogel [30], or conductive fibres [31] show promise, but
remain difficult to manufacture as well as being prone to
hysteresis and nonlinear response. Other sensors for soft robots
have similar challenges, such as piezoresitive, capacitive, or
pneumatic. Strain gauges are proven and reliable, but are
typically used in rigid grippers to isolate relevant forces,
hence their application to parallel-jaw grippers, either standard
commercial (e.g., Schunk), micro-grippers [32], or 3-axis in
grip force sensing [33]. Our approach of instrumenting three
flexible steel fingers with strain gauges combines accurate in-
grasp force sensing with the benefits of a compliant system.

B. Reinforcement Learning for Grasping

Reinforcement learning allows training grasping controllers
which exploit sensor information to actuate grasps, often learn-
ing in simulation for time and resource efficiency [14]. Table I
compares relevant research to illustrate that no reinforcement
learning grasping works combine compliance and closed-loop
force feedback. Specifically, we refer to measuring in-grasp
forces for continuously adjusting the gripper joints.

Combining tactile sensing and feedback has only been seen
on greater than 1DoF grippers, and most frequently without
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TABLE I
COMPARISON BETWEEN METHODS USING REINFORCEMENT LEARNING FOR GRASPING.

Author Year Gripper Gripper
DoF

Compliant
links or joints

Tactile force
sensing

Closed-loop
gripper feedback

Simulated
training

Zeng [18] 2018 RG2 gripper 1 − − + ✓
Chen [19] 2022 RG2 gripper 1 − − + ✓
Song [20] 2020 RG2 gripper 1 − − + −
Kalashnikov [4] 2018 Parallel jaw gripper 1 ✓ − + −
Kim [21] 2021 Robotiq 2 finger gripper 1 − − + ✓
Liu [22] 2023 4 finger gripper + fingertip suction 2 ✓ − − ✓
Deng [23] 2019 2 finger gripper + moving suction cup 3 − − − ✓
Merzic [12] 2019 Barrett hand 4 − ✓ ✓ ✓
Wu [24] 2020 Barrett hand 4 − + ✓ ✓
Chebotar [11] 2017 Barrett hand 4 − ✓ ✓ −
Wu [25] 2019 Barrett hand 4 − − − ✓
Kumar [26] 2019 Allegro hand 16 − + ✓ ✓
Liang [27] 2022 Shadow hand 20 − + ✓ ✓
This work 2024 3 finger gripper + moving palm 3 ✓ ✓ ✓ ✓

✓ indicates the feature is used, − that it is not. For tactile sensing + indicates using binary contact information, rather than measured
forces. For closed-loop feedback + means using feedback with binary open/close grasping, rather than continuous grasping control.

using vision during grasp [11], [12], [24], [26], [27], as in
the present work. Merzić et al. [12] used contact forces with
trust region policy optimization, but trained and tested on five
objects in simulation only without considering force limits.
Chebotar et al. [11] used relative entropy policy search, using
BioTac sensors for force feedback. However, they learned a
separate policy for each of their three training objects, then a
master policy to select between them and handle regrasping.
Our work approaches the problem differently with an end-to-
end view of training one network that should generalize to
different objects as well as handle regrasping implicitly.

Wu et al. [24] presented multi-fingered adaptive tactile
grasping (MAT), using modified proximal policy optimization
(PPO) with the Barrett Hand, and achieving 98.7% real grasp
success rate. In contrast to our approach, they used binary
sensing without force limits or compliance during feedback
grasping; however, the high success rate and generality of
their multi-fingered approach make MAT the most suitable
related work to apply on our gripper. We therefore used MAT
as a baseline to compare against our method, and Section V-C
details further the technical aspects.

Liu et al. [22] presented a similar compliant modeling
approach. They used a 2DoF soft gripper trained in simulation
with double deep Q-learning, based on pre-grasp depth images.
They modeled their variable stiffness tendon actuated gripper
fingers with circular arcs then achieved bending in simulation
by splitting each finger into four segments and directly setting
the joint angles between them, based on a target pose. Then,
they assumed the fingers will behave rigidly. In contrast, our
work models finger compliance during interaction. This is
essential for our force feedback grasping, as contact forces
need to be accurately modeled to enable real world transfer.

C. Simulating Grasping and Deformation

The gold standard for deformation simulation is commer-
cial FEM software such as Abaqus, ANSYS, and COM-
SOL, which are too slow for reinforcement learning [15].
Instead, simulators for robotics use simplified models, such

as mass-spring models with volume constraints (MuJoCo,
CoppeliaSim, PyBullet), neo-hooken volumetric FEM (PyBul-
let), or position based dynamics (Nvidia Issac). Nvidia FleX
offers co-rotational linear volumetric FEM for higher fidelity
analysis of stress and strain fields, however timesteps must
remain small (e.g., 0.67ms) and framerates low (e.g. 5 − 10
fps) [34]. This results in simulation 10−100× slower than real
time. Simulation of deformation is integrated with traditional
rigid-body physics for robotics in FleX, making it suitable
for grasping [26], [34]. The computational expense remains
significant for reinforcement learning; via a tailored model the
present work simulated bending at 16.8× real time in MuJoCo.

Accurate physics simulation of contact mechanics and
tribological effects such as friction is an ongoing area of
research [15], [16]; especially when considering nonlinear
hyperelastic compliant materials like elastomers. The current
work limited surface forces, avoided elastomers, and prior-
itized geometry to secure objects with a caging approach,
which all reduce reliance on accurate simulation of friction.

D. Modeling Large Deflection Cantilevers
Analytical solutions for large deflection cantilevers have

been presented, but vertical point end load requires numerical
methods to solve [35]. Simplified pseudo-rigid-body models,
based on dividing a beam into N spring jointed segments, have
been presented to match tip deflection [36], where numerical
optimization determines parameters; typically, link lengths and
spring stiffnesses. Su [37] presented an N = 3 method with
linear spring stiffness, Vedant and Allison [38] presented a
method suitable for N joints, using nonlinear spring stiffness.
Pseudo-rigid-body models have been applied to robots, such
as an N = 6 model for a continuum manipulator [39] and an
N = 3 catheter model [40]. Roesthuis and Misra [41] pre-
sented a rigid link model, deriving a joint stiffness to connect
N segments for a continuum manipulator. They applied the
model in a control loop for an actuated prototype, based on
known applied forces. We also use a rigid link model, but
apply it for computationally efficient data-driven training of
grasping, adapting it for integration in a physics simulator.
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(a) Gripper section view (b) Finger and palm sensors

Fig. 2. Design of the gripper: a) Section view showing the mechanical design, sensor placements, and dimensions, with blue arrows indicating degrees of
freedom; b) Finger sensing with strain gauges mounted in a full-bridge (top), palm cross-section showing load cell which measures axial forces (bottom).

III. GRIPPER DESIGN

We summarize the grasping principle, and then present the
3DoF gripper, which has entirely new actuation, and embedded
finger and palm sensing, compared to our previous design [17].

A. Caging Inspired Grasping Principle

The gripper design results in two mechanisms in the grasp.
Firstly, the caging effect, surrounding and trapping objects
between the fingers and palm. Secondly, friction, mediated by
finger stiffness as well as opposition between the fingers and
the palm. Caging works well for spheres, which approximate
many fruits and vegetables, and finger flexibility aids adapta-
tion to irregular objects. Friction is required for objects with
parallel edges, such as sideways cylinders, which cannot be
fully caged by the design; it also helps secure grasps, as the
flexible fingers can be loaded like springs to a desired force.

B. Actuation System and Mechanical Design

The gripper uses three stepper motors, with all motions
driven via non-backdrivable leadscrews, shown in Figure 2-a,
to prevent the cage opening from disturbances. The three
fingers perform identical 2DoF motions, driven through a
gearbox. Each finger is connected to two leadscrew nuts via
a pin joint and a sliding pin joint. Synchronized leadscrew
motion causes constriction, the finger displaces whilst main-
taining a constant angle to surround objects. Whereas, differing
leadscrew actuation will tilt the finger through different angles,
to get underneath objects and to more directly mediate finger
bending. The maximum achievable tilt angle is ±40◦, allowing
the fingertips to touch via tilt only from the maximally open
position. Without tilting, the fingers can open to a maxi-
mum grasp diameter of 275mm, and a minimum of 105mm.
Hence, the largest objects graspable fit within the 275mm
grasp diameter, and the smallest is approximately a 40mm
diameter sphere (e.g. strawberries). The palm, which extends
and retracts up to 165mm to cage objects and press them into

the fingers, is driven by a non-captive stepper motor where the
leadscrew shaft passes through the motor. The finger motors
both have torque of 130Nmm, reliably exerting grasp forces up
to 3N, whilst the palm motor has a torque of 100Nmm, able
to exert up to 30N. The gripper weighs 2.2kg. The motors,
driven up to 400rpm, can cover their workspace within 5s.

Compared to the previous gripper [17], the new actuation
has reduced torque requirements, less backlash and wear,
decoupled tilt and constriction, and the ability to open the
fingers past parallel. Weight reduced by 2×, volume by 5×.

The gripper fingers should adapt to objects whilst being
feasible to model efficiently. 304 stainless steel was selected,
fulfilling the criteria: 1) linear elastic bending under grasp
forces; 2) food safe; 3) suitable for instrumentation with strain
sensing; 4) Youngs Modulus resulting in appropriate deflection
under grasp forces (see Section IV-B). Lower yield strength
compared to other materials was a limitation, as well as
possibility of long term fatigue failure. A 75◦ bend, 35mm
long, was placed at the end of each finger, and no high friction
material like silicone was added, as caging rather than friction
was intended to be the primary mechanism for grasping.

C. Embedded Sensors and Electrical Design

The gripper used force sensing integrated into three areas:
the fingers, palm, and wrist. The gripper was mounted onto a
Franka Emika Panda robotic arm, which provided the external
vertical forces at the wrist. Measuring these out of grasp
forces intended to allow detecting of collisions and grasped
object weights. Finger and palm sensing of in-grasp forces
was achieved onboard, as shown in Figure 2-b, aiming to sense
object geometries and allow grasping using force feedback.

Finger force sensing used four strain gauges wired in a
full bridge configuration. Each side of the finger had two
gauges, one mounted axially to measure bending and the
other mounted perpendicularly to cancel out Poisson effects,
as shown in Figure 2-b. Strain was linear from an end applied
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force (see Section IV), and large enough that gauge placement
was not critical. All fingers used during experiments (nine)
were calibrated with loads up to 3N. The largest finger sensor
uncertainty was ±38mN, at the 95% confidence interval (CI).

The palm sensor measured axial compressive force using
a penny load cell, with 30N maximum allowable force, as
shown in Figure 2-b. A delrin plastic bearing allowed axial
force transmission and hence measurement, but protected from
out of axis forces. Contact between the load cell and leadscrew
was preloaded by three equally spaced tension springs to
eliminate backlash and overcome stiction. The palm was
calibrated up to 5N and had uncertainty ±39mN (95% CI).

An onboard Arduino GIGA was used to control the motors,
read the finger and palm sensors at 20Hz, and send and receive
data at 20Hz via wired USB-C. Power input was 24V 5A.

IV. MODELING BEAM BENDING WITH SEGMENTS

This section applies a rigid link approximation to model
finger bending in MuJoCo, then validates the accuracy with
simulated and real world experiments.

A. Model for a Segmented Beam

The flexible fingers were modeled using a rigid link ap-
proach [41], being divided into N equal segments, connected
by revolute joints with linear stiffness. Joint stiffness depended
on the beam rigidity, which is the product EI of the Young’s
modulus, E, and the cross-sectional 2nd moment of area, I .
The flexible fingers were considered as cantilever beams under
a point end load. By assuming negligible mass for a thin
beam and small angles, virtual work gives a static equilibrium
expression for segment angle relative to the previous segment,
θn, in a beam divided into N segments connected by spring
joints with stiffnesses kn:

θn =
N − n+ 1

N
· FL

kn
(1)

where n is the segment number (from 1 to N segments), F
is the applied end load, and L is the total unbent beam length.

We assumed an Euler-Bernoulli beam, and that the small
deflection approximation was valid despite the fact we wanted
to model large deflections. Bisshopp [42] showed that this
assumption is appropriate and introduces very little error in
large deflection cases provided that FL2/EI < 1. This was
valid in our case (max 0.95 at 5N). The beam deflection, δ(s),
at the nth joint (assuming positions sn = (n−1)L/N along the
beam) is given by small deflection theory. Then, the relative
angles, θn, of segments that connect these deflected positions
can be determined using the gradient:

θn =
δ(sn+1)− δ(sn)

sn+1 − sn
− δ(sn)− δ(sn−1)

sn − sn−1
(2)

θn =


FL2

2EIN2
(N − 1

3 ), n = 1

FL2

EIN2
(N − n+ 1), n > 1.

(3)

We can rearrange Equation (1) and substitute in our ex-
pression for θn from Equation (2) to get our relation of beam
rigidity, EI , to joint stiffness, k, at the nth joint:

kn =


2EIN

L

N

N − 1
3

, n = 1

EIN

L
, n > 1.

(4)

The final expression describes the choice of joint stiffness
kn which should be set in simulation for modeling finger bend-
ing. This expression differs from Roesthius and Misra [41],
but will converge to their result with sufficiently high N .
The additional N/(N − 1

3 ) term, arising from our derivation
based on point end load, can be considered a point end load
correction factor for low N .

B. Model Validation Using Theory and Real Experiment

The joint stiffness model was evaluated using segmented
beams in MuJoCo, then validated against theory and real data.
Segmented beams are convenient to create in Unified Robotics
Description Format (URDF) format, being a series of identical
links connected by revolute joints, with the torsional stiffness
given by Equation (4). Beams with 3 to 30 segments were gen-
erated in URDF for this validation, with three different beam
rigidities, EI = [0.29, 0.34, 0.40] Nm2, corresponding to the
gripper fingers tested in grasping experiments (Section VI)1.

Validation was done for a point end load with real exper-
imental data; and for a point end load, uniformly distributed
load, and point end moment compared against theory. For
validation with a point end load, three end masses were
applied: 100g, 200g, and 300g; chosen to keep stress below
yield. For validation with the uniformly distributed load and
point end moment, three loads were again applied, scaled to
result in equal deflection to the three mass conditions for point
load. The deflected shape of the real beams was extracted
by hand from camera images. Hanging masses were used to
apply end loads to horizontally clamped beams, then additional
deflection due to beam weight was removed by subtracting the
unloaded deflection shape from each loaded deflection shape.

1) Error metric: The percentage area error was used to
quantify model error, referring to the area of the errors between
two curves divided by the total area under the reference curve
(theory or real data). The tip position error was verified to be
in agreement, being on average 0.34% less than area error.

2) Theory validation results: Figures 3-a, 3-b, and 3-c
show that errors between the model and theory are low.
For N ≥ 8, the maximum error was 2.9%. The model
converges as N increases, but does not converge to zero error,
resulting in some small error increases with N . This shows our
assumptions introduced up to 3% error compared to theory.

3) Real experimental data validation results: Figure 3-d
shows that real experimental data errors are comparable with
the theory case (Figure 3-a), however maximum error in-
creased to 5.3% rather than 2.9%. Despite increased variance

1I = t3w/12 for finger thickness, t, and width, w. We vary EI using real
finger geometry t× w (all mm): 0.86× 28.0; 0.96× 24.0; 0.96× 28.0.
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Fig. 3. Model error with respect to theory (a, b, c) and real data (d). The error
is averaged across three applied loads of 100/200/300g (or equal maximum
deflection in b) and c)), with the range shown by the shaded region.

Fig. 4. Averaged (avg.) errors over the three load magnitudes for each of
the three rigidities, comparing our model against Roesthuis and Misra [41]:
a) Averaging the errors with respect to the three theory load cases, point end
load, uniformly distributed load, and end moment; b) Error with respect to
real data, for point end load. Range shown by the shaded region.

(min/max values shown by the shaded region), the convergence
was similar, with an average difference between all individual
datapoints of only 1.5%. This additional uncertainty may be
from imperfect camera calibration, measurement error during
hand extraction of bending profiles, and selection of Youngs
Modulus (E = 193GPa [43] was used for stainless steel).

4) Comparison against Roesthuis and Misra: Figure 4
compares our model against the rigid link model from
Roesthuis and Misra [41], using tip position error to align
with their validation approach. The comparison against theory
considers all three load cases, where error varied by only 0.1%
on average, but maximum error (shown by shaded region)
for our model averaged 2.7% less for N < 10. Our model
had faster convergence for point end load, and theirs for end
moment. Our model had lower point load error across all N
using real data, averaging 1.3% less for N < 10.

5) Discussion: The validation illustrates that the model
is in agreement with both theory and real measurements,
with error below 5.3% for real data and 2.9% for theory,
for N ≥ 8. The results in this section demonstrate that
the model converges as the number of segments used to

approximate the beam increases, but does not converge to
zero error. The load conditions, beam rigidities, and force
ranges included in this validation cover our requirements for
simulating grasping. Point load is the most frequently expected
case, but the good performance on uniform loads and end
moments provides confidence the model is suited to more
complex cases. We showed our model converged faster for
point end load on the actual gripper fingers, and had reduced
maximum errors for small N compared to Roesthuis and
Misra. Since computational efficiency favors small N , this
justified using our model during simulations.

We selected N = 8 for simulating grasping as larger
N yields only marginal accuracy improvements whilst also
slowing down the simulation, for example N = 9 is 20%
slower. More joints have greater computational expense and
smaller segments with tiny inertia values cause simulator
instability, necessitating smaller physics timesteps as segments
are insufficiently “damped” by lack of inertia. We achieve a
speed up factor 2.2 by scaling segment inertia by 50, with
no difference to model static equilibrium and no measurable
difference to grasping, thus running simulation at 16.8× faster
than real time. The mujoco timestep used was 2.6ms. Over-
all, model error was considered acceptable given simulation
already introduces a sim2real gap, and supported by the
simulated and real grasping results (Section VI) empirically
demonstrating effective sim2real transfer.

V. LEARNING AND EVALUATING GRASPING

Proximal policy optimization [44] was used to train a
grasping controller in simulation, which was then evaluated
with two experiments in the real world.

A. Reinforcement Learning Formulation

We formalize grasping as a Markov Decision Process
(MDP) defined by ⟨S,A, p, γ⟩, with observation space S,
action space A, a joint probability p(r, s′|s, a) of a reward r
and next state s′, given state s and action a, and discount factor
γ ∈ [0, 1). A policy π selects a to maximize the expected
return, R, according to the reward function r : S × A → R.
Any policy π has associated an on-policy value function
V π(s), giving R from following π given starting state s. The
advantage function Aπ(s, a) describes the relative change in
R from a particular action a compared to a random action.

PPO is a model-free policy gradient method, where the
gradient of policy performance with respect to R is maximized.
A fixed policy πθk , parameterized by a neural network, collects
trajectories Dk over T timesteps. Then, we use the PPO-clip
objective, maximizing with stochastic gradient ascent:

θk+1 =
1

|Dk|T
∑
τ∈D

T∑
t=0

min
(
PθA

πθk (s, a), g
(
ϵ, Aπθk (s, a)

))
(5)

where: Pθ =
πθ(a|s)
πθk(a|s)

(6)

g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0
(7)
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The hyperparameter ϵ clips optimization step size, and was
set to 0.2. The advantage Aπθk (s, a) was calculated with gen-
eralized advantage estimation [45], based on R̂t, the rewards
from t → T , and a value function network, parameterized by
ϕ, which was updated using gradient descent:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(s)− R̂t

)2

(8)

B. Applying Learning to Grasping
The grasping proceeds with observations of the current state

st = {smotors
t , stactilet } containing motor state information

smotors
t and sensor information stactilet , which is a 63 element

vector. All values are normalized between [−1,+1].
smotors
t concatenates vectors for the 4DoF, these being the

three gripper motors denoted [x, y, z] and the gripper vertical
height [h], as shown in Figure 1. Each of these vectors has 7
elements and is structured as {at−3, b3, at−2, ..., b1, at} where
at−i is the position at the specified timestep, up to i = 3 into
the past, and where bi = sign(at−i+1−at−i), i.e., the sign of
the change in the position, taking only values bi = [−1, 0,+1].
stactilet concatenates vectors for the five sensors: three finger

sensors, the palm, and the wrist. Each of these vectors has 7
elements and is structured as {ct−3, d3, ct−2, ..., d1, ct} where
ct−j is the sensor reading at the specified timestep, up to j = 3
into the past, and where dj is the average of all sensor readings
received in-between timesteps, typically three readings.

The action at the current timestep, at, is a 4 element vector
corresponding to the change in motor state of each DoF. Ele-
ments are clipped to remain between [−1,+1] then multiplied
by step sizes [x∗2mm, y∗0.015rad, z∗4mm, h∗2mm]. We used
MuJoCo for simulating the gripper, approximating the parallel
leadscrew actuation with a revolute and prismatic joint.

A learning rate of 5 × 10−5 was used with the Adam
optimizer [46] (β1 = 0.9, β2 = 0.999). Each training epoch
had 6000 samples, with updates iterated 80 times. γ was 0.99,
λ was 0.97, target KL divergence was 0.01, and maximum KL
ratio 1.5. Uniformly random action noise ±0.05 was added.

The key reward signals were +1 and episode complete for a
successful grasp, −1 and episode terminated for an object out
of bounds, and a −0.004 penalty for each step, the reciprocal
of the step limit, T = 250. A successful grasp required lifting
the object whilst all contact forces remained in desired ranges
(exact criteria given in upcoming Section V-C). A sparse
reward failed to learn, particularly as achieving the desired
palm force required many steps before contact. Therefore, a
shaped reward based primarily on sensor forces was used,
both to guide learning and to teach force limits. Each of
the three sensors (fingers, palm, wrist) had a desired force
range, r1 ≤ f < r2, which incurred a reward of 0.0008, a
dangerous force range, r2 ≤ f < r3, which incurred a penalty
of −0.0008, and a termination threshold, f ≥ r3, above which
incurred a penalty of −1 and ended the episode. For each
finger and the palm sensor (r1, r2, r3) = (1, 4, 5)N and for
the wrist (r1, r2, r3) = (6, 6, 8)N. Rewards of [0.0008, 0.0016]
were given for lifting the object [> 0, > 15]mm off the ground.

1500 simulated objects were used for training, with 100
reserved for testing. The set was composed of 13 elementary

object categories: spheres, sideways cylinders, upright cylin-
ders, various cuboids etc. Within each category, numerous
objects were generated varying in size between the smallest
and largest the gripper should grasp. For example, sphere
diameter varied from 50− 160mm. Objects also had varying:
edge fillet radius, from 5 − 45mm; friction coefficient, from
0.5 − 2.0; and density, from 100 − 300kg m−3. The average
mass was 145g, maximum 500g. An illustration of the training
set can be seen in Figure 5-a, which is a real life recreation
of the simulation test set, reduced from 100 to 30 objects.

The central idea in using elementary object shapes was
to generalize to irregular shapes, for example a sphere gen-
eralizing to an apple, by using noise during training. Each
episode, every incoming sensor reading was transformed by
a uniformly random static offset u1 ∈ [−0.05, 0.05], and a
random Gaussian noise with standard deviation, s = 0.025;
every motor state reading was transformed by a uniformly
random static offset u2 ∈ [−0.025, 0.025]. These were applied
following normalization of all readings between [−1,+1], with
saturation enforced. This means two identical objects would
be associated with noise with respect to both sensor readings
and gripper motor states. This noise, when combined with
the flexible fingers adapting to objects shapes, aimed to allow
generalization from elementary shapes to irregular ones.

C. Training and Experimental Protocol

During simulated training, simulated experiments, and real
world experiments, the following definitions were consistent:

1) Grasping Trial: Objects were placed under the gripper
aligned with the center of grasp, with ±15mm position noise,
in any random rotation which did not collide with the initial
position of the fingers. The gripper was initialized to a height
h = 10mm above the table, with ±5mm of noise. Trials ended
after 250 steps, if the object went out of bounds, or following
automatic detection of a successful grasp (verified in real life).

2) Successful Grasp Criteria: a) object picked up off the
ground; b) average finger force exceeds 1N; c) palm force
exceeds 1N; d) no individual finger or palm force exceeds
4N; e) height h > 20mm. The success rate percentage (SR %)
was given out of the total number of trials. The 1N minimum
ensured stable caging grasps. The 4N limit prevented high
forces, and compromised between real fingers actuating most
reliably up to 3N, and 1N overhead which improved learning.

3) Stable 5N Grasp Criteria: a) successful grasp estab-
lished; b) object resists 5N vertical disturbance and remains
grasped. The palm would push the object directly downwards
and out of grasp (up to 30mm) whilst measuring whether
the force required exceeded 5N, as shown in Figure 6-a. This
metric, “Stable 5N %”, was a percentage out of the number
of successful grasps, and was only evaluated in real life.

Figure 5 shows the three object sets used for real world
evaluation. Experiment One compared simulation success rates
with real life, recreating the simulation test set from a repre-
sentative set of polystyrene objects painted with a hard coat.
The real masses were less (average 35g) than the simulation
masses (average 145g). Experiment One had four objectives:
compare the sim2real gap; compare performance on three
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(a) Real world version of simulation test set (30 objects)

(b) YCB grocery items [47] (18 objects)

(c) Real grocery items (24 objects)

Fig. 5. Object sets used for experiments, with mass distributions indicating
object masses throughout each set. Objects shown in grasping orientation. For
scale: spheres in a) range from 50 − 160mm diameter; the strawberry in b)
is a 45x55mm ellipsoid, the red cracker box is 210x160x60mm; the lime in
c) is a 50x60mm ellipsoid, the salad bag is 210x210x55mm.

finger rigidities (EI = 0.29, 0.34, 0.40); compare with and
without using the mathematical model (Section IV) at training
time; and an ablation study from zero sensors to all three
sensors (fingers, palm, wrist) to assess the impact of each
sensor. 5 trials were performed on each of the 30 objects.

Experiment Two evaluated generalization to two sets of
unseen grocery objects, the 18 YCB food objects [47], and
a set of 24 real grocery objects, with 5 trials per object. Real
groceries were chosen to range across a variety of weights
(93 − 638g), sizes (50mm diameter lime to 180mm long
cartons), geometries (spheres, ellipsoids, cylinders, cuboids,
irregular shapes), and dynamics (single items, bunches, bags).

We compared our PPO policy against three baselines.
Firstly, a heuristic strategy: 1) detect the table using the wrist
sensor; 2) tilt fingers to a 15◦ angle, so fingertips are parallel
to the table; 2) constrict the fingers until the finger forces
averaged 1.5N; 3) lower the palm until the force exceeded
1.5N; 4) lift up, using feedback control to maintain the finger
and palm forces within the limits for a successful grasp. These
force values were chosen to result in similar forces to the PPO
policy at the end of grasp (see Section VI-B), and to ensure
grasps on the test objects (grasped 40/42 during experiments).

A second baseline controller was trained using MAT [24].
Originally presented for the Barrett hand, the state vector

TABLE II
EXPERIMENT ONE: GRASPING SUCCESS RATE (SR %) IN SIMULATION

(SIM.) AND ON REAL VERSION OF SIMULATION TEST SET (FIGURE 5-A).

Use
model

Sensors
in use

Finger
rigidity (Nm2)

Sim.
SR %

Real
SR %

Real 5N
stable %

Yes All 0.29 91.9 93.3 76.4
Yes All 0.34 91.5 98.0 93.2
Yes All 0.40 89.2 90.7 92.7

No All 0.29 81.5 61.3 46.7
No All 0.34 81.5 63.3 45.3
No All 0.40 81.5 66.7 59.0

Yes Fingers, palm 0.29 88.4 79.3 51.3
Yes Fingers 0.29 64.3 80.0 58.4
Yes None 0.29 61.6 68.7 35.9

TABLE III
EXPERIMENT TWO: GRASPING SUCCESS RATE (SR %) AND

SUCCESSFUL GRASP FORCES ON GROCERY OBJECTS (FIGURE 5-B,C).

Controller Grocery
objects

Avg. finger
force (N)

Avg. palm
force (N) SR % Stable

5N %

PPO (ours) YCB 1.29 3.08 94.4 80.1
Heuristic YCB 1.49 2.74 83.3 53.3
MAT + ours YCB 1.73 2.69 76.7 44.9
MAT [24] YCB 1.36 0.00 84.4∗ 40.5

PPO (ours) Real 1.42 2.98 95.8 80.1
Heuristic Real 1.49 2.57 78.3 47.3
MAT + ours Real 1.72 3.21 80.1 61.9
MAT [24] Real 1.27 0.00 75.0∗ 53.3

*Successful grasp only required lifting the object, as in [24].

reduced from 15, 288 values to 779, as our gripper has 3
joint angles compared to 8, and 5 force sensors rather than 96
tactile cells. We used continuous force readings (not binary),
to encode more information, and trained using the same
elementary objects and state reading noise as our main method.
The fingertip height was fixed at 5mm above the table, as MAT
has no vertical height action (±h). Learning did not occur
using the force-dependent successful grasp criteria, so for this
baseline a successful grasp was defined as lifting the object.

A combination of MAT and our method was used in a third
baseline, which did use the full successful grasp criteria. We
changed to our reward function, our 4DoF actions (with ±h),
and no curriculum. We retained MAT’s state vector, network
architecture, Bernoulli action sampling, and loss function.

VI. RESULTS

Results are given for Experiment One, comparing simulated
vs real performance; and Experiment Two, which evaluated
generalization to grasps of YCB and real grocery objects.

A. Experiment One: Training Objects

The results for Experiment One are shown in Table II. The
top three rows compare policies trained using the mathematical
model for finger bending (Section IV), applied to three differ-
ent finger rigidities. Simulation success rate peaked at 91.9%
and varied by only 2.7%, demonstrating effective learning
between rigidities using the model. The best real world success
rate was 98.0% with EI = 0.34, with 93.2% of these grasps
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(a) Grasp criteria (b) Successful grasps of grocery items

Fig. 6. Grasps achieved using our PPO policy; a) Illustrating the two criteria used to evaluate grasps: a successful grasp requires a lifted object and safe
finger and palm forces (1− 4N), whereas a stable 5N grasp also requires tolerance to a 5N vertical disturbance from the palm, which pushes downwards up
to 30mm whilst measuring whether the required force exceeds 5N; b) Grocery item grasps, real in the top two rows and YCB [47] in the bottom row.

resisting a 5N disturbance. All three policies transferred well,
with an average sim2real success rate improvement of 3.1%.

The middle three rows in Table II illustrate training with
rigid gripper fingers, and not using the finger bending model.
Simulated success rates only reached 81.5%, a drop of 10.4%
compared to training with finger bending. Sim2real transfer
was worse using this policy, with average performance reduc-
tion of 17.7%, resulting in a best real success rate of 66.7%.

The bottom three rows in Table II show an ablation reducing
the number of sensors available at training and testing time
from all (fingers, palm, wrist) to none, with EI = 0.29. As
each sensor was removed, the average performance reduction
was 10.1% for simulated success rate, 8.2% for real success
rate, and 13.5% for 5N stable grasps. Policy transfer was more
variable than with all sensors, with a 10.3% sim2real gap.

B. Experiment Two: Generalizing to Grocery Objects

The results for Experiment Two are shown in Table III,
comparing generalization of the best PPO policy from Ex-
periment One (98.0%, all sensors, EI = 0.34) to unseen
grocery objects, against three baseline controllers (detailed
Section V-C). Our PPO controller achieved 94.4% success rate
on the YCB grocery set, and 95.8% on the real grocery objects.
The stable 5N grasp rate was 80.1% on both object sets. Our
PPO controller performed 15.0% better than the best baseline
for successful grasps (80.0%, heuristic), and 25.3% better than
the best baseline for stable 5N rate (54.8%, MAT+ours). The
three baselines varied in success rate by only 2.1% and stable
5N rate by 7.3%. Our PPO policy averaged the same total
in-grasp force, 7.1N (three fingers plus palm) as the heuristic,
whereas MAT+ours averaged 8.2N, and MAT averaged 3.9N.

VII. DISCUSSION

Experiment One demonstrated very successful learning and
sim2real transfer, reliant on our model for compliant finger

bending and in-grasp sensing. Experiment Two showed this
learning generalized to novel and challenging grocery objects
with high grasp success rates and grasp stability, effectively
combining with force feedback and compliant gripper design.

A. Experiment One: Training Objects
The 98.0% highest grasping success rate in Experiment One

demonstrated excellent grasping reliability, whilst 93.2% of
these grasps then resisting a 5N vertical disturbance showed
strong grasp stability. The policy used the wrist sensor to
keep the fingertips close to the table and slip them underneath
objects. Once in grasp, motions became smaller to keep forces
in range and prevent smaller objects falling out of grasp
before the fingers closed. The policy learned to tilt the fingers
only through small angles, keeping the fingertips from going
past parallel to the ground (≤ 15◦) and reducing bending;
consequently, limiting surface forces on the object.

The finger bending model and training method worked
across all three finger rigidities. The average sim2real differ-
ence was 3.1%, always improving in the real world. The main
sim2real difference was in palm contact forces, which in real
life increased more sharply following contacts, compared to
smoother force signals from MuJoCo’s soft constraint physics.
Hence, real policies exhibited more reactive palm behavior,
frequently retreating after initial contacts with more rigid
objects. This sim2real difference in contacts was not seen with
the fingers as their compliance inherently smoothed forces.

The most common cause of failed trials in both simulation
and real grasping was objects which were grasped and picked
up, but did not qualify as successful grasps because the forces
were outside the acceptable 1−4N limits, usually finger forces
too low or palm forces too high. The EI = 0.34 policy best
solved this problem in real life with feedback adjustments and
improved fine motor control, leading to the best success rate.

Training without the bending model, instead using rigid
fingers, resulted on average in: 9.4% lower simulation success
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rate; 30.3% lower real grasping success rates; and 20.8%
worse sim2real transfer. Real success rates and sim2real trans-
fer reduced with less rigid fingers, which had a wider gap from
the rigid fingers during training. These results demonstrate that
training with the bending model was essential to our approach.

The ablation study demonstrated that in-grasp sensing with
our embedded sensors improved performance. Using fewer
sensors, policy sim2real transfer was more variable. The
fingers and palm policy overfit and transferred poorly to the
real world, due to observed over-reliance on palm force signals
which had the biggest sim2real difference. The fingers only
and no sensors policies transferred well due to a slow, cautious
approach. They closed the grasp very gradually, relying on the
automatic detection of successful grasps (which did use the
sensors). Training was harder with fewer sensors, the number
of training runs able to “learn” and achieve SR > 5% reduced
from 14/15 with all sensors to 1/15 with none.

B. Experiment Two: Generalizing to Grocery Objects

Experiment Two demonstrated that our method generalized
from seen basic shapes to unseen irregular groceries, achieving
95.0% success rate over both grocery sets. The YCB groceries,
whilst geometrically accurate, have low mass and different
friction properties compared to real groceries; yet, success
rates for our PPO policy varied by only 1.4%, implying that
performance was not sensitive to the weight or frictional
properties of grasped objects. This is a consequence of the
geometric caging approach, combined with limits on finger
and palm reaction forces. The average successful grasp finger
forces of 1.36N and palm force of 3.02N prevented observed
damage to real groceries, except minor banana bruising. Lower
force limits could be achieved, but reduce training quality.

The main limitation of our approach is that grasping invari-
ance to weight and friction properties breaks down as masses
increase. In practical terms, heavy objects cannot be grasped
because the fingers are not stiff enough to lift them. Force
limits and low friction exacerbate this issue, and the maximum
weight of a smooth plastic ball that could be grasped was
550g using our best policy and EI = 0.34 fingers. With
real groceries, most grasp failures occurred from the heaviest
objects, like the banana bunch, slipping following an initial
grip which formed a poor cage. Whereas, the YCB set included
the smallest objects, and failures occurred from objects falling
out from between the gripper fingers before they had closed.

We demonstrated that our method outperformed three base-
lines. The heuristic baseline had failed grasps due to naive
feedback control, which only considered keeping forces in
desired ranges, rather than accounting for state information
and specific object geometry. Both MAT-based controllers had
failures from poor action choices in out of distribution states,
implying greater sensitivity to sim2real differences and unseen
objects from the 12× larger state vector. MAT generalized
relatively well to our gripper, achieving 97.1% success rate on
the 7 YCB food objects which were tested on and got 98.6% in
the original paper. Our comparatively simpler state vector may
aid generalization to other grippers, however the force limiting
would be difficult to achieve without compliance and caging.

The MAT baseline controller had the lowest stable 5N rate,
47.6%, as it did not learn to use the palm. This was because the
minimum 1N palm force requirement was removed, to enable
learning, and in line with the criteria used in the original paper.

Overall, Experiment Two demonstrated that the policy could
generalize, supporting the use of noise during training coupled
with compliance and caging. The flexible fingers acted like
springs which repositioned objects into the center of grasp,
whilst also balancing and smoothing out force signal irregular-
ities. This meant that, despite training only on regular objects,
reliable grasping was achieved on highly irregular items such
as a net bag of tangerines, salad bag, and bunch of bananas.
These objects are not only irregular in regard to shape but also
dynamics, with changeable geometry and inertial properties
during grasp. Compliance and caging aided generalization by
handling uncertainty, which made objects appear less irregular
to the policy. The gripper design was reliable, completing 2190
grasps in these experiments without mechanical faults.

VIII. CONCLUSION

We developed a grasping approach which combined rein-
forcement learning with force feedback, based on modeling
compliant gripper fingers. We presented a gripper design and
applied a model for the flexible gripper fingers, combining
them to train in simulation a grasping controller with PPO.
We demonstrated generalization to complex and challenging
grocery objects whilst respecting force limits, with a 95.0%
grasp success rate, and 80.1% of those grasps capable of
resisting an additional 5N vertical disturbance. This exceeded
performance of three baselines by 15.0% for success rate and
25.3% for resisting the 5N disturbance, despite up to 14.7%
less in-grasp force. We evaluated our method on three finger
rigidities, achieving 98.0% success rate on training objects
and a 3.1% average sim2real gap. We showed that using the
bending model and in-grasp sensors improved both learning
and real world grasping performance. The main limitation of
our approach was reduced performance for objects over 550g.

For future work, object localization and tolerance to clutter
via camera sensors and additional actions will be considered.
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