SDS - See it, Do it, Sorted: Quadruped Skill Synthesis
from Single Video Demonstration

Jeffrey Li*, Maria Stamatopoulou®, and Dimitrios Kanoulas

SDS Simulated Demonstration

SDS Real

a) Trotting b) Bounding

d) Pacing

c) Hopping

Fig. 1: SDS’ ability to imitate demonstrated videos, in simulation and real-world (blue: rare legs, red: left-side legs).

Abstract—In this paper, we present SDS (“See it. Do it.
Sorted.”’), a novel pipeline for intuitive quadrupedal skill
learning from a single demonstration video. Leveraging the
Visual capabilities of GPT-40, SDS processes input videos
through our novel chain-of-thought promoting technique (SUS)
and generates executable reward functions (RFs) that drive
the imitation of locomotion skills, through learning a Proxi-
mal Policy Optimization (PPO)-based Reinforcement Learning
(RL) policy, using environment information from the NVIDIA
IsaacGym simulator. SDS autonomously evaluates the RFs by
monitoring the individual reward components and supplying
training footage and fitness metrics back into GPT-40, which
is then prompted to evolve the RFs to achieve higher task
fitness at each iteration. We validate our method on the Unitree
Gol robot, demonstrating its ability to execute variable skills
such as trotting, bounding, pacing and hopping, achieving
high imitation fidelity and locomeotion stability. SDS shows
improvements over SOTA methods in task adaptability, reduced
dependence on domain-specific knowledge, and bypassing the
need for labor-intensive reward engineering and large-scale
training datasets. Additional information and the open-sourced
code can be found in: https://rpl-cs-ucl.github.io/SDSweb.

I. INTRODUCTION

Over the past decades, advancements in computational
hardware have spurred the development of foundational mod-

The authors are with the RPL Lab, Department of Computer Sci-
ence, University College London, Gower Street, WCIE 6BT, London,
UK. D. Kanoulas is also with the AI Centre, Department of Computer
Science, University College London, Gower Street, WCIE 6BT, Lon-
don, UK and Archimedes/Athena RC, Greece. {jeffrey .11i.20,
maria.stamatopoulou.2l, d.kanoulas}Qucl.ac.uk

*equal contribution

This work was supported by the UKRI Future Leaders Fellowship
[MR/V025333/1] (RoboHike). For the purpose of Open Access, the author
has applied a CC BY public copyright license to any Author Accepted
Manuscript version arising from this submission.

els [1], particularly in the form of Large Language Models
(LLMs) [2]-[4] and Visual Language Models (VLMs) [5]-
[7]. These models, trained on extensive datasets, demonstrate
versatility and can be integrated into robots for real-world
applications, such as industrial and agricultural inspections,
monitoring of hazardous environments and search and rescue
operations.

Replicating animals’ diverse and agile locomotion skills
has long posed a challenge in robotics. Recent works have
explored this through imitation learning, utilizing Motion
Capture (MoCap) systems to track and replicate actions [8]—
[10], or through visual demonstrations to guide reward
function engineering in Reinforcement Learning (RL) [11]—
[13]. However, these methods often require extensive manual
labeling, specific domain knowledge and vast amounts of
training data making even a single skill challenging to learn.
As a response, leveraging foundational models to synthesize
low-level controllers for robots is emerging as a research
focus, especially for quadrupedal robots, which are valued
for their ability to navigate complex environments, while
maintaining stability [14], [15]. Foundational models can
bridge cognitive task understanding and low-level robotic
actions [16]-[19] by using image or video demonstrations
of animal motor skills, offering a more intuitive approach to
task instruction and direct mapping to action generation.

Leveraging the latest advancements in VLMs, we pro-
pose an innovative algorithm, named SDS (“See it. Do
it. Sorted.”), which utilizes GPT-4V(ision) to generate re-
ward functions for learning locomotion skills applied to
quadrupedal robots. SDS processes a single video of any
quadrupedal agent (animal or robot) performing the desired
task and generates reward functions that drive the learning of

https://rpl-cs-ucl.github.io/SDSweb/

low-level control policies through RL. Our novel approach
improves upon the SOTA framework [20], automating and
refining the evolutionary search of reward functions with
visual input, to better imitate the demonstrated task. SDS
represents the development of single-demonstration skill
learning, facilitating multi-skill platform-invariant policies,
minimizing dataset size requirements and removing the need
for manual reward engineering. We also propose SUS (“See
it. Understand it. Sorted.”), a novel prompting technique that
breaks down a task prompt into intuitive sub-steps, guiding
the model through the reasoning stage for more accurate and
coherent problem-solving. Our contributions are summarized
as follows. We introduce:
o High-fidelity skill imitation through
demonstration using VLMs.
« SUS: Novel chain-of-thought prompting technique
e SDS: Video-to-reward function pipeline for low-level
skill learning using RL.
o Real-world deployment stack with experiments using
the Gol robot.

The remainder of the paper is structured as follows: In
Sec. II, we review relevant literature on skill imitation.
Sec. III provides the necessary background on RL and
VLMs, while Sec. IV details our proposed method, with
experimental results presented in Sec. V. Finally, Sec. VI
summarizes our findings and outlines future work.

II. RELATED WORK

Learning from expert demonstrations for skill imitation
has received increased attention from the robotics com-
munity [21]-[23]. In the past, enabling robots to achieve
locomotion required extensive reward engineering [24]. This
is a challenging and time-consuming process, due to the sen-
sitivity of deep learning algorithms to hyper-parameters and
the specific weights assigned to different reward components,
requiring trial-and-error fine-tuning, making it challenging to
develop even for a single robot skill [25].

As a response, robot control solutions shifted towards
dependence on domain experts and the creation of high-level
action plans through learning-based approaches [26], [27].
This often involves the use of MoCap systems to extract
expert data from animal movement in the form of keypoint
locations (e.g., joint and base movement), which is then used
in combination with Deep RL systems to train low-level
policies replicating the behaviors [8]-[10]. While these meth-
ods outperform classical approaches by eliminating explicit
environment modeling [28], they often suffer from reduced
generalization and transferability to novel tasks and robotic
platforms. Notable contributions are proposed by leverag-
ing information from videos [29], by developing a spatio-
temporal re-targeting framework that aligns the spatial trajec-
tories and temporal dynamics of the source MoCap-recorded
motion with the robot’s capabilities and optimizes them
using RL. A physics-informed 3D reconstruction pipeline
is proposed in [30] to extract key-point trajectories from
monocular videos, followed by offline trajectory optimization
with contact-implicit constraints through a Model Predictive

single video

Controller (MPC) to generate dynamically feasible robot
motion. However, MPC’s high computational cost and real-
time optimization demands can introduce latency and require
significant computational power.

Recent works are moving towards using Generative Al, as
it can offer a more intuitive approach to task instruction. One
such direction includes leveraging Generative Adversarial
Networks (GANs) to drive the agent’s learning process
towards closely matching the target motion, by dynamically
choosing whether the reference motion originates from a
random RL agent or an expert dataset [31]-[33]. However,
this often suffers from mode collapse issues due to the
delicate balance required between the generator and discrim-
inator networks. Another approach [20] uses LLMs trained
on extensive programming data to automate the generation
of RL reward functions. This is achieved by encoding the
desired task specifications for LLM interpretation to produce
reward functions integrated into the RL agent’s training
process and iteratively refined. Although “a picture is worth
a thousand words”, it highlights the limitations of relying
solely on natural language descriptions for task delineation.
A visual aspect to skill learning is introduced in [34], com-
bining a VLM and RL to enable one-shot learning of robot
policies. The VLM encodes visual and language data into a
shared embedding space, which allows the system to map
visual observations directly to corresponding actions based
on a single demonstration. This provides a starting point for
the RL process, which fine-tunes the policy with minimal
additional data. This approach allows effective learning of
robot skills without any manual reward engineering required,
however, the VLM is specifically trained for manipulators
and does not generalize to mobile robots. In our solution, we
leverage the GPT4-V VLM, due to its generalization capabil-
ities, to enhance upon [20] by enabling single-demonstration
videos to autonomously drive all reward generation, skill
acquisition, and reward evaluation. Our approach allows
the system to interpret and map visual data from a single
demonstration directly into reward signals, facilitating the
learning of complex skills with minimal data.

III. PRELIMINARIES
A. Reinforcement Learning (RL)

Reinforcement Learning (RL) aims to optimize the ex-
pected cumulative rewards that an agent accumulates over
time. At each time step t, the agent observes the current
system state x; and selects an action a; according to the
current policy m(at|z:), where the action a; is sampled
from this policy. The chosen action transitions the system
to a new state x4, and the agent receives a reward r; =
r(x¢, ar,xi+1) based on the current state, the action taken,
and the resulting new state.

This study uses the Proximal Policy Optimization (PPO)
algorithm to discover the optimal policy. PPO is an actor-
critic policy gradient method that has demonstrated robust
performance in solving complex tasks [35]. PPO is designed
to train a stochastic policy using an on-policy learning
approach. The PPO loss function is defined as the expectation

@

GPT-40 &)

IsaacGym Env Code

def get_observation(self):

self.root_states = ...

Executable RFs

Evolution
Prompt

Best Reward Function

Evolution Prompt Generation

Reward Signal Tracking

Reward Function Evaluation

Contact Sequence

Sururea], QdJd wAoIeesy

Execution Footage

Fig. 3: SDS Training Pipeline: The process begins with gridifying the demonstration video and generating the SUS prompt

(Sec. IV-A). This is followed by the SDS iterations involving:

(1) Generating 8 python-based reward functions (RFs) through

GPT-40 (Sec. IV-B) and filtering them. (2) The executable RFs drive the skill imitation through learning of PPO policies in
IsaacGym (Sec. IV-B). (3) The values of each RF’s reward components are monitored during training. (4) During the final
checkpoint of each RF, Contact Sequence and Execution footage are recorded (Sec. IV-C) (5) Performance of the RFs is
evaluated by GPT-40 using the SUS prompt and monitored data from (4) (Sec. IV-D) (6) The locally optimal RF is identified
(7) and is then used as a basis for the evolution prompt along with its monitored reward signal to generate evolved RFs,
which are queried and used in subsequent training iterations (Sec.IV-E).

over the minimum of the standard policy gradient objective
and a clipped version of the objective, which introduces a
constraint that limits how much the new policy can deviate
from the old policy. The clipped objective is defined as:

19(9) = B, [min (r(0) Ay, clip (r(0),1 — €,1+ ¢) At)‘] :

(D
where 7:(6) denotes the probability ratio of the action
under the current policy relative to the previous policy, and
Ay represents the advantage function, which estimates the
relative value of the selected action in the current state by
considering the discounted reward minus the value function
estimate.

B. VLMs

Visual Language Models (VLMs) are multi-modal founda-
tional models able to process text and images simultaneously.
They are trained on web-scale visual-text data and can
perform zero-shot inference on unseen data, demonstrating
their versatility and robustness in various applications. At
their core, VLMs combine a) machine vision, i.e., translating
raw pixels into object representations; b) LLMs, which
offer interpretability and connect content expressed across
different contexts; and c) fusing agents, for the interaction of
(a) and (b). VLMs are particularly beneficial in applications
such as robotics, as they allow robots to understand and
capture concepts that are difficult to describe using natural
language alone, such as skill learning.

In this work, we utilized GPT-4V(ision), an extension
of GPT-40 developed by OpenAl, that incorporates image

input to perform multi-modal learning. GPT-4V utilizes a
transformer architecture, undergoing a two-phase training
process. In the pre-training phase, it learns to understand and
generate text and images by analyzing extensive datasets.
Subsequently, it undergoes domain-specific fine-tuning for
specific applications. With GPT-4o as its foundation, GPT-4V
demonstrates a superior ability to reason about the content
of images in conjunction with textual information, surpassing
the performance of existing models [36].

Although most research on VLMs has focused on images
as the visual input, VLMs trained on videos can offer a
better conceptual understanding of skill learning. Training
such models can be achieved either by adapting existing
image-based language models to handle video input, as seen
in models like VidIL [37] and XCLIP [38] or by pre-training
a model from scratch which typically employ a BERT-
style masked modeling objective [39] or contrastive learning
objectives (CLIP).

IV. METHOD

The SDS algorithm proposes a novel solution to generating
optimal RL reward functions (RFs), driven by single demon-
stration video input, for quadrupedal robot skill learning.
Leveraging the NVIDIA IsaacGym environment and building
upon the reward evolution pipeline established in [20], our
method introduces a novel prompting technique and task
fitness evaluation pipeline to ensure optimal RF formulation
for skill imitation. We run 5 SDS iterations, where each
iteration involves the generation of 8 RFs, followed by PPO
training and evaluation of the RFs for the quadrupedal agent.

Each of the 8 RFs undergoes 1,000 PPO training iterations,
with the entirety of SDS taking a maximum of 1 day to train,
using a single NVIDIA RTX-4090 GPU.

A. Prompting Techniques

We develop novel techniques for video and task prompt-
ing.

1) Video Prompting: In choosing a VLM, we tested
current SOTA video VLM models [40], [41], that perform
well for visual-language tasks (e.g., video captioning), but
usually struggle with outputting structured, syntactically and
semantically correct Python code.

Hence, we propose a novel video prompting technique
using GPT-4V(ison) [36], part of GPT-40. GPT-4V does not
directly process video input, so to enhance the retention of
cohesive information while ensuring the generation of high-
quality Pythonic RFs, we propose sampling video frames
at regular intervals and arranging them uniformly on a grid
(Fig. 4.a), with sampling rate = +/grid size. The grid size is
varied for each task and is selected based on the quality and
resolution of the video, on striking the ideal balance of pre-
serving contextual information across frames and minimizing
context loss, e.g., videos with lower frame rates would have
a larger grid size. Varying the size is important as larger grid
dimensions increase computational costs and cause GPT-4V
to lose focus on the primary task of generating reward func-
tions. In contrast, smaller grids sacrifice critical contextual
information between frames, which is essential during the
task fitness evaluation phase. By employing this grid-based
encoding, GPT-4V can effectively interpret the demonstrated
task and generate appropriate RFs while reducing the overall
cost compared to sequentially processing individual frames.

3 . rq} &? YEF‘ 1. Task-Descriptor Agent
S?z‘ m mﬂ__, “The primary object in the frames is the quadruped robot. It has four
s s legs with articulated joints, a cylindrical body, and various
%w ﬁ?‘ P‘% mechanical components. The sequence shows the robot walking

. a) B across the frames from left to right ...”

2. Gait-Analyzer Agent
“- **Frames 1-2**: Front Right (FR) and Rear Left (RL) legs are in contact with the
ground, Front Left (FL) and Rear Right (RR) are off the ground.- **Frames 3-4**: ...”

3. Task-Requirement Agent
“... The torso seems to remain rather stable while maintaining at perpendicular orientation

to the ground, while the locomotion remains at a constant and moderate speed ...”

4. SUS-Prompt-Generator Agent
“First, you are shown the task to imitate a quadruped in a trotting gait. This gait involves
the same-side pairs of legs moving together, meaning ... You must keep the torso should
remain near a z position of 0.34 and the orientation should be perpendicular to gravity...”

b)

Fig. 4: SDS Prompting Techniques: a) Gridified demonstra-
tion videos b) SUS task decomposition Agents prompting.

2) SUS Prompting: To ensure that the generated RFs do
not deviate from the primary task demonstrated in the video,
we introduce a multi-stage RF prompting process, namely
SUS (”See it. Understand it. Sorted.”) prompting (Fig. 4.b).
This approach, inspired by human cognition and [42], [43],
leverages a multi-agent system to decompose complex visual
information into smaller, more interpretable units, facilitating

understanding and decision-making. SUS decomposes the
task by creating 4 task-specific GPT-40 Agents, by modifying
the system prompts for each conversation. When the gridified
frames are inputted in the SUS, the: a) Task-Descriptor
Agent is prompted to describe and explain the most likely
task being demonstrated. This information is then relayed
to the b) Gait-Analyzer Agent, which analyzes the most
probable contact sequence and potential regular gait patterns
based on the frames and the task description. Next, the c)
Task-Requirement Agent is tasked with identifying additional
key characteristics necessary to replicate the demonstration
successfully. Finally, the d) SUS-Prompt-Generator Agent
compiles all the gathered information to generate the final
SUS prompt. This SUS prompt and the gridified frames are
finally used to query for RF sampling. This approach has
significantly improved the relevance of the generated reward
functions to the specific demonstration video.

B. Reward Function Generation

Querying GPT-4o for RF sampling in our method requires
the simulators’ environment code, gridified demonstration
video representation, and the SUS prompt, with the latter
two components obtained from Sec. IV-A. Our method uses
the NVIDIA Isaac Gym simulation environment code (See
Fig. 3) adapted from [44], [45], specifically for quadruped
forward locomotion tasks, which gives critical robot state
and action attributes (e.g., base position/velocity and joint
positions/velocities), forming the foundational inputs to gen-
erate RFs. GPT-40 is queried to generate 8 Python-based RF
samples, which we experimentally found to be an adequate
number to ensure diversity in the RFs while mitigating the
risk of non-executable code due to potential hallucinations
by the language model. These RF samples compute various
reward components (e.g., tracking of Boolean feet contact
states [4 x 1], joint angles [12 x 1], and joint velocities
[12 x 1]), which are returned in the form of a dictionary
along with the total reward value, allowing them to be tracked
during training. The generated RFs are filtered to ensure they
are executable Python code by checking for Python trace-
back errors.

C. Training Step: Isaac Gym PPO Training

The executable RFs provide the learning signal for the
PPO training of the quadruped simulated agent; in our
case a Unitree Gol robot. We leverage IsaacGym’s parallel
training capabilities, training 4000 robots simultaneously.
During PPO training for each RF, the output actions are the
12 joint positions corresponding to the agent’s motors. The
reward signals of the individual reward components within
the RF dictionary are monitored based on the quadruped’s
behavior and stored every 100 iteration. These component
values provide the vital signal for reward evolution in the fol-
lowing reward generation iteration (Sec. IV-E). For instance,
if the values of one reward component are significantly larger
than the rest, it may be asked to be re-scaled. If the values
are unchanged throughout training, it might mean that this
component cannot be optimized and is discarded.

D. Evaluation Step

For each SDS iteration, the locally optimal RF is identified
and selected based on task fitness, which serves as the
basis for RF evolution in following iterations. However, [20]
uses a distinct human-defined fixed task fitness function
for each different task, posing limitations and rendering it
inappropriate for our method. Defining task fitness with-
out MoCap systems is challenging, as SDS relies on a
single video demonstration that lacks pre-engineered key-
points, camera specifications, and world context necessary
for tracking-based evaluation. Additionally, GPT-40 might
generate functions that do not replicate essential components
of the demonstrated footage. For example, given a video of
a dog walking, the reward function might guide a quadruped
robot to walk, but it may fail to capture specific aspects, such
as gait or style, critical to the algorithm’s intended imitation
objective.

The SDS evaluation step is designed to automate the
assessment of the sampled RFs’ imitation behavior while
also addressing the limitations of [20]. To do so, for every
trained RF the latest checkpoint is run for 1000 inference
steps and the robot’s behavior is recorded, providing video
footage and the corresponding foot contact pattern plots
which consists of the boolean contact states of the 4 feet
of the robot (Fig. 6). To minimize computational cost and
GPT-induced hallucinations, the recorded footage is also
gridified to perform single-prompt evaluation rather than
evaluating individual frames. Despite GPT-4V’s considerable

Fig. 5: ViTPose++ Pose Estimation on (top) the demonstra-
tion video and (bottom) the training sample.

capabilities in interpreting visual content, it frequently failed
to accurately identify specific activities or locate the simu-
lated robot within the video frames, e.g., GPT misclassified
a quadruped as an airplane or floating bench. Hence, we
incorporated ViTPose++ pose estimation technique [46] to
estimate keypoints for the quadruped robot’s skeleton in
both the recorded inference footage and the ground truth
demonstration video (Fig. 5). This approach provided a
structured understanding of the quadruped’s movements,
facilitating a more precise evaluation of how effectively
the RFs reproduced the target behaviour. The annotated
frame grids and the corresponding contact sequence together
form the RF evaluation prompt, used to query GPT-4o0 to
evaluate and score the performance of each of the RFs.
Each training sample is assessed on locomotion stability,
gait pattern similarity, and task accuracy to identify the
RF* that optimally aligns with these performance objectives.

This method enhances comparative analysis and ensures the
generated outputs closely align with the intended actions.

E. Reward Function Evolution

The selected locally optimal RF* from Sec. IV-D and its
corresponding monitored reward components signals (Sec.
IV-C) makes the evolution prompt, which serves as the basis
for optimizing the RF samples generation process. GPT-4o is
queried once more with this evolution prompt, SUS prompt
and the gridified demonstration frames to synthesize the new
evolved 8 RF samples. These evolved RFs are subsequently
employed in the next SDS iteration of training, perpetuating
a continuous cycle of refinement and improvement in the
quadruped’s behavior within the NVIDIA Isaac Gym envi-
ronment.

V. RESULTS

We verify our method using 4 videos of different
quadrupeds performing different skills. The specific skills
are trot: synchronous movement of diagonal limbs, bound:
synchronous movement of front limbs, pace: synchronous
movement of adjacent limbs, and hop: synchronous move-
ment of all limbs. These locomotion skills are selected
due to their utility in locomotion, while their proximity
in behavior allows for the evaluation of SDS’s sensitivity
to detail apprehension. We implement SDS on the Unitree
Gol’s NVIDIA Jetson Xavier NX on-board computer, using
a Docker-based architecture similar to [44]. The learned
PPO policy for each skill runs at a 0.02s control step,
with real-time policy switching enabled via the joystick. The
Sim-to-Real transfer exhibits zero-shot capability, achieving
seamless real-world behavior without further randomization
or adaptation.

A. Skill Learning Evaluation

To validate the effectiveness of SDS in mimicking the
target skill, we focus on video-to-video comparison, contact
sequence analysis and stability evaluation of the learned
policy. The achieved imitation is illustrated in Fig. 1,
with video footage available at our Website https://rpl-cs-
ucl.github.io/SDSweb/.

1) Frame-by-Frame Imitation Evaluation: Dynamic Time
Warping (DTW) analysis is implemented to perform a frame-
by-frame comparison between the demonstration and trained
footage, due to its capabilities of handling temporal misalign-
ment by dynamically adjusting the time windows, thereby
minimizing cumulative distance. Keypoint sequences are
extracted from both videos via a pose estimation model [46],
followed by spatial alignment using Iterative Closest Point
(ICP) analysis to mitigate spatial discrepancies between
sequences. The aligned keypoints are then normalized based
on their centroid and fixed scale factors, ensuring consistent
scaling and positioning across frames. We perform DTW
analysis for all skills, with the distance metric summarized
in Table I. The DTW analysis reveals a very strong similarity
between the training and demonstration footage, with higher
discrepancy observed in the bounding skill. This deviation

https://rpl-cs-ucl.github.io/SDSweb/
https://rpl-cs-ucl.github.io/SDSweb/

Trot | Bound | Hop | Pace
1.28 2.85 1.47 | 1.92

TABLE I: DTW frame-by-frame comparison distance in the
scale of e =6

correlates with tracking inaccuracies during fast movements,
where motion blur in the hind legs complicates precise
keypoint identification.

FRI @ . H B 1 m ®m
RR I H 1 0 _H_H_1
RL I 0 1 1 0 1 1
FLE & B B B B E &§

a) Trotting

FRE @ I B B B B 1
RR @ B I B 1 H m &m
RLE B 0B B B 0 1 1

. 1 i1 nnmnmni
b) Bounding
FRIHl I H = = =
RRE@ E E E = &=
RL W H EH E = &
il I B = = =
c) Hopping
FR_H 1 1 ®m ®m 1 1
RR_ B 1 01 1 1 1 ~m
Rl B I I B B 1 1
FLE B I B B B & ©§

d) Pacing

Fig. 6: Gait Evaluation: (left) Contact Sequences from sim-
ulated robot, (right) Force Sensor readings from real robot.

2) Gait Imitation Evaluation: We evaluate SDS gait im-
itation capabilities both in simulation and the real robot, by
assessing the learned gait patterns, in the form of contact
sequence and force sensor reading plots(see Fig. 6). The
simulated contact sequences are obtained as boolean contact
state values for all legs of the agent. For the real robot,
we record force sensor readings from all legs and apply
smoothing using a moving average window for visualization
purposes. A clear distinction can be observed between skills,
with both types of plots following the expected skill outcome,
as described at the beginning of the section.

3) Locomotion Stability Evaluation: We conducted 10
experiments per skill, to assess the locomotion stability
of the policies, evaluating the robot’s ability to run for 1
minute in each trial. We measured the number of robot
resets per run, occurring when the robot’s base or knees
touched the ground. All simulated experiments yield 0
resets, demonstrating reliably stable locomotion behavior.
We further evaluate locomotion stability, by recording and
analyzing the robot’s base height fluctuations during each
I min run (Fig. 7). Overall, all skills demonstrate a high
degree of stability, characterized by periodic oscillations of
low variance. Pacing and trotting exhibit minimal fluctuations
in base height, indicative of steady dynamics. Bounding
and hopping display denser oscillatory patterns and slightly
higher variance, attributed to these gaits’ faster and more
dynamic nature; however, they still maintain high stability,
highlighting SDS’s robust control output.

32.5

MW ol M gl .

‘NL ikl TP
\ a) Trotting " b) Bounding N

240 353

’ 25
20.5

¢) Hopping

d) Pacing

Fig. 7: Stability Evaluation: Robot base height (cm) over a
consecutive 1-minute run.

B. SDS compared with SOTA methods

Our proposed SDS framework exhibits similarities on
scope to Eureka [20], RoboCLIP [34], and SLoMo [30],
as detailed in Sec. II. We run all three methods with our
demonstration videos and can conclude the following: SDS
improves upon Eureka by removing the need for manual
task fitness construction and enhancing skill interpretability
through visual input. Compared to RoboCLIP, SDS provides
better quadrupedal locomotion performance due to the strate-
gic use of the highly generalizable GPT-40 VLM. Despite
training each skill for 4 days —3 days longer than SDS—
, RoboCLIP failed to replicate the target demonstrations.
SDS also demonstrates faster training than SLoMo, which
takes 8 hours to process a 1-minute demonstration using 8
NVIDIA GeForce RTX 3080 GPUs. Moreover, while SLoMo
requires continuous connection to a workstation for trajectory
optimization and online MPC, SDS runs fully on the robot’s
onboard GPU, eliminating reliance on external resources.

VI. CONCLUSION

We present SDS, a new pipeline for quadrupedal skill
learning from a single demo video. Using GPT-4, we au-
tomatically generate reward functions (RFs) to train PPO
policies in IsaacGym, achieving effective quadruped locomo-
tion. The key innovation lies in our prompting method and
autonomous RF evaluation and evolution, enabling precise
capture of skill details. SDS was validated through real-world
experiments, where skill imitation was rigorously assessed
using Dynamic Time Warping (DTW), achieving values on
the order of e~°, and gait similarity was verified through
contact sequences and force sensor data, demonstrating high
fidelity to the demonstration videos. Locomotion stability
was further confirmed across all skills, with no reset events,
and by tracking low variance in periodic base height fluc-
tuations over one-minute intervals. SDS outperforms SOTA
methods by eliminating the need for manual task-specific
fitness construction, significantly reducing data requirements,
and enhancing training efficiency. Future research will focus
on combining skills into multi-skill policies through hierar-
chical learning to enable quadrupeds to learn a wider range of
behaviors within one controller and extend SDS to different
morphologies, such as humanoid robots.

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

R. Bommasani and et al, “On the Opportunities and Risks of Foun-
dation Models,” 2022.

A. Dubey and et al, “The llama 3 herd of models,” 2024.

OpenAl and et al, “Gpt-4 technical report,” 2024.

Anthropic, “Claude 3 haiku: Our fastest model yet,” March 2024,
accessed: 2024-08-01.

J. Lee, J. Kim, H. Shon, B. Kim, S. H. Kim, H. Lee, and J. Kim,
“UniCLIP: Unified Framework for Contrastive Language-Image Pre-
training,” 2022.

S. Geng, J. Yuan, Y. Tian, Y. Chen, and Y. Zhang, “HiCLIP: Con-
trastive Language-Image Pretraining with Hierarchy-aware Attention,”
2023.

A. Singh and et al, “FLAVA: A Foundational Language And Vision
Alignment Model,” 2022.

X. B. Peng and et al, “Learning agile robotic locomotion skills by
imitating animals,” in Robotics: Science and Systems, 07 2020.

S. Bohez et al., “Imitate and repurpose: Learning reusable robot
movement skills from human and animal behaviors,” Nature, 2022.
X. B. Peng and et al, “Physics-based motion capture imitation with
deep reinforcement learning,” Nature, 2020.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. Cambridge, MA, USA: The MIT Press, 2018.

D. Hadfield-Menell and et al, “Inverse Reward Design,” 2020.

S. Booth and et al, “The perils of trial-and-error reward design: misde-
sign through overfitting and invalid task specifications,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 37, no. 5, 2023,
pp. 5920-5929.

T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

J. Lee, J. Hwangbo, and et al, “Learning quadrupedal locomotion over
challenging terrain,” Science Robotics, vol. 5, no. 47, Oct. 2020.

D. Kanoulas, N. G. Tsagarakis, and M. Vona, “Curved patch mapping
and tracking for irregular terrain modeling: Application to bipedal
robot foot placement,” Robotics and Autonomous Systems, 2019.

J. Liu, S. Lyu, D. Hadjivelichkov, V. Modugno, and D. Kanoulas, “Vit-
a*: Legged robot path planning using vision transformer a*,” in /[EEE-
RAS International Conference on Humanoids Robots (Humanoids),
2023.

J. Liu, M. Stamatopoulou, and D. Kanoulas, “Dipper: Diffusion-based
2d path planner applied on legged robots,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2024, pp.
9264-9270.

M. Stamatopoulou, J. Liu, and D. Kanoulas, “Dippest: Diffusion-
based path planner for synthesizing trajectories applied on quadruped
robots,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2024.

Y. J. Ma and et al, “Eureka: Human-Level Reward Design via Coding
Large Language Models,” arXiv preprint arXiv: Arxiv-2310.12931,
2023.

L. X. Shi and et al, “Waypoint-based imitation learning for robotic ma-
nipulation,” in Proceedings of The 7th Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, vol. 229. PMLR,
2023, pp. 2195-2209.

C. Wang and et al, “Mimicplay: Long-horizon imitation learning by
watching human play,” in Conference on Robot Learning (CoRL),
2023.

E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns, “Demonstrate
once, imitate immediately (dome): Learning visual servoing for one-

[24]

[25]

[26]

[27]

(28]
[29]

(30]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

shot imitation learning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” in 5th
Annual Conference on Robot Learning, 2021.

B. Chen and J. Su, “Addressing reward engineering for deep reinforce-
ment learning on multi-stage task,” in Neural Information Processing,
T. Gedeon, K. W. Wong, and M. Lee, Eds. Springer International
Publishing, 2019, pp. 309-317.

L. Yao, V. Modugno, A. M. Delfaki, Y. Liu, D. Stoyanov, and
D. Kanoulas, “Local navigation among movable obstacles with deep
reinforcement learning,” in JEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2024.

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion Policy: Visuomotor Policy Learning via
Action Diffusion,” 2024.

D. Kalashnikov and et al, “MT-Opt: Continuous Multi-Task Robotic
Reinforcement Learning at Scale,” 2021.

T. Yoon and et al, “Spatio-temporal motion retargeting for quadruped
robots,” 2024.

Zhang and et al, “Slomo: A general system for legged robot motion
imitation from casual videos,” IEEE Robotics and Automation Letters,
vol. 8, no. 11, pp. 7154-7161, 2023.

X. B. Peng and et al, “Amp: Adversarial motion priors for stylized
physics-based character control,” in ACM Transactions on Graphics
(TOG), vol. 40, no. 4. ACM, 2021, pp. 1-14.

T. Wang, H. Kasaei, and H. 1. Christensen, “Dynamic generative
adversarial networks for realistic action imitation,” IEEE Robotics and
Automation Letters, 2021.

J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016, pp. 4565—
4573.

S. A. Sontakke and et al, “RoboCLIP: One demonstration is enough
to learn robot policies,” in Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
O. Klimov, “Proximal policy optimization algorithms.”
vol. abs/1707.06347, 2017.

OpenAl, “Gpt-4v(ision) system card,” 2023.

Z. Wang and et al, “Language models with image descriptors are
strong few-shot video-language learners,” 2022.

B. Ni and et al, “Expanding Language-Image Pretrained Models for
General Video Recognition,” 2022.

K. Lin and et al, “SwinBERT: End-to-End Transformers with Sparse
Attention for Video Captioning,” 2022.

B. Lin and et al, “Video-llava: Learning united visual representation
by alignment before projection,” 2023.

Z. Tong and Y. al, “VideoMAE: Masked Autoencoders are Data-
Efficient Learners for Self-Supervised Video Pre-Training,” 2022.

J. Wei et al., “Chain of thought prompting elicits reasoning in large
language models,” arXiv preprint arXiv:2201.11903, 2023.

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
Language Models are Zero-Shot Reasoners,” 2023.

Y. J. M. andet al, “Dreureka: Language model guided sim-to-real
transfer,” 2024.

G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” 2022. [Online].
Available: https://arxiv.org/abs/2205.02824

Y. Xu and et al, “Vitpose++: Vision transformer for generic body pose
estimation,” 2023.

and
CoRR,

https://arxiv.org/abs/2205.02824

	INTRODUCTION
	RELATED WORK
	Preliminaries
	Reinforcement Learning (RL)
	VLMs

	METHOD
	Prompting Techniques
	Video Prompting
	SUS Prompting

	Reward Function Generation
	Training Step: Isaac Gym PPO Training
	Evaluation Step
	Reward Function Evolution

	RESULTS
	Skill Learning Evaluation
	Frame-by-Frame Imitation Evaluation
	Gait Imitation Evaluation
	Locomotion Stability Evaluation

	SDS compared with SOTA methods

	CONCLUSION
	References

