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Abstract— Social navigation in robotics primarily involves
guiding mobile robots through human-populated areas, with
pedestrian comfort balanced with efficient path-finding. Al-
though progress has been seen in this field, a solution for the
seamless integration of robots into pedestrian settings remains
elusive. In this paper, a social force model for legged robots is
developed, utilizing visual perception for human localization.
In particular, an augmented social force model is introduced,
incorporating refined interpretations of repulsive forces and
avoidance behaviors based on pedestrian actions, alongside
a target following mechanism. Experimental evaluation on a
quadruped robot, through various scenarios, including interac-
tions with oncoming pedestrians, crowds, and obstructed paths,
demonstrates that the proposed augmented model significantly
improves upon previous baseline methods in terms of chosen
path length, average velocity, and time-to-goal for effective
and efficient social navigation. The code is open-source, while
video demonstrations can be found on the project’s webpage:
https://rpl-cs-ucl.github.io/ASFM/

I. INTRODUCTION

Navigating through human-populated environments, such
as urban streets or shopping centers, presents a complex
challenge in robotics, requiring the combination of intricate
prediction of human behavior with effective route planning.
Unlike traditional robotics navigation [1], which primarily
addresses static or dynamically predictable obstacles, social
navigation requires the integration of interaction between
humans and robots to maneuver through spaces actively
shaped by human presence. This approach significantly relies
on visual input, a dominant human sensory channel, which is
increasingly being used in robotics through advanced neural
networks and enhanced computational capacities [2].

Current social navigation models, mainly developed for
interaction, such as tour guides or information assistants [3],
lack the agility and adaptability needed for seamless integra-
tion into everyday human environments. In contrast, modern
agile robots, particularly quadrupeds [4], [5], offer notable
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Fig. 1: Social navigation examples, based on the Augmented
Social Force Model (ASFM), handling oncoming pedestrians
(left) and following people through crowded areas (right).

benefits in these settings, navigating more naturally among
pedestrians. However, their deployment faces significant hur-
dles due to safety and social acceptance concerns, despite the
great potential offered by advancements in robotic perceptual
and interaction capabilities.

Despite these technological strides, a significant gap per-
sists in the seamless integration of robots into these social
contexts, primarily due to human discomfort and apprehen-
sion in sharing walking spaces with robots as equals. This
unease underscores a critical challenge in the development
of social navigation systems for robots: the need for models
that not only ensure safety and efficiency, but also exude
friendliness and minimize intrusion into personal space. Ad-
dressing this challenge, our article introduces a novel social
navigation model designed to harmonize robot movement
within human-centric environments (Fig. 1), with the aim
of bridging the comfort gap and foster more naturalistic
interactions between humans and robots.

We demonstrate our social navigation algorithm on a
physical quadruped robot system operating in human pop-
ulated mock environments. Our approach is capable of
social navigation with a focus on non-intrusive human-robot
interaction, with main contributions being the introduction of
an Augmented Social Force Model (ASFM) that improves
upon the notion of potential force fields describing pedes-
trian intentions, implemented on a mobile robot system that
couples perception and action for autonomous non-intrusive
vision-based pedestrian social navigation.



A. Related Work

Social navigation, a field that combines human behavioral
analysis with robotic navigation, has seen significant ad-
vances, particularly influenced by autonomous driving tech-
nologies. The challenges in social navigation include motion
planning, human behavior interpretation, and model evalu-
ation, with safety and social compliance being paramount.
An overview of previous methods and approaches to social
navigation can be found in [6].

Historically, path planning treated humans as static enti-
ties, lacking interaction [7]–[16]. Contemporary approaches,
however, prioritize human awareness, inferring intention, and
responses to enhance social navigation [17], [18]. This shift
led to the adoption of models based on Inverse Reinforce-
ment Learning (IRL), focusing on human interaction and pre-
dictive planning [19]. Notably, Cooperative Collision Avoid-
ance models emphasize collective effort in multi-agent envi-
ronments to mitigate collisions, underscoring the complexity
of human behavior interpretation [20]. Different methodolo-
gies have emerged that combine explicit and implicit strate-
gies for social compliance. Explicit approaches, such as those
that use topological invariants and braid groups, simplify
multi-agent dynamics for improved path planning [21], [22].
Meanwhile, implicit models, typically grounded in neural
networks, adapt based on learned collision avoidance behav-
iors without explicit constraints, aligned with IRL paradigms
to navigate ambiguous human behaviors [23], [24]. A most
notable work using Reinforcement Learning (RL) for mod-
eling and navigating pedestrian populated environments is
the work by Chen et al. [25], where they postulated that
its relatively easier to train on what social norms dictate
not to do, an approach this work was influenced by when
creating solutions for certain common pedestrian scenarios.
More recently, Hirose et al. [26], also introduced a learning-
based way to train a policy for unobtrusive social navigation
for simple social interactions. Recent innovations include
Mixed Observability Markov Decision Processes and Par-
tially Observable Markov Decision Processes, along with
applications of Generative Adversarial Networks and Long
Short-Term Memory networks [27]–[29]. These models, par-
ticularly prevalent in the autonomous driving sector, have
contributed significantly to understanding social navigation
within densely populated environments.

Although learning-based methods described above are able
to learn complex behaviors of high dimensionality and rich
data, interpretability, simplicity, efficiency, and robustness are
sometimes lacking. The evolving landscape of social naviga-
tion underscores the necessity for multifaceted solutions that
integrate behavioral insights and advanced computational
techniques, highlighting the absence of a one-size-fits-all
model architecture for effective social navigation. These
challenges are addressed in this paper by developing and
implementing an advanced Social Force Model [30] on a
quadruped robot, leveraging visual perception for enhanced
human detection and interaction. By synthesizing elements of
traditional and social navigation, a solution is presented that

not only avoids obstacles, but also engages with pedestrians
in a manner that respects social norms and enhances pedes-
trian comfort. Social comfort is regarded on the grounds that
the pedestrians in the scenarios did not have to make way
for the robot and were not socially intruded upon by the
robot. Onboard visual sensors are used for social navigation,
compared to previous works that use external bird-eye-view
cameras, e.g. [31], making much of the state-of-the-art pedes-
trian intention descriptions and algorithms inapplicable to a
first-person Point of View (POV) robot. Other works, such
as [32], apply a first-person POV for predicting pedestrian
movement, although they fall outside the immediate scope
of this paper, which is aimed at exploring the interaction
between pedestrians and robots rather than predicting the
interaction scenario. Closer to this work is [33], which
proposed a headed SFM to deal with side-stepping, following
behavior, and direction priorities, as well as [34], [35], which
use elliptical forces for robot social navigation to overcome
the use of limit cycles. A step forward is taken with the
integration of an augmented SFM with refined repulsive
forces and avoidance behaviors, significantly enhancing path
efficiency and pedestrian comfort in various challenging
scenarios on legged robots.

II. PEDESTRIAN DYNAMICS MODELING

In this section, the background theory is given, which
allows a legged robot socially navigate among humans,
extending upon the notion of Social Force Model (SFM)
for pedestrian dynamics by Helbing et al. [30] as the main
dynamics of human-to-human interaction. SFM describes a
pedestrian’s intentions to reach a goal location, while avoid-
ing other pedestrians, through attractive (goal) and repulsive
(pedestrian and obstacles) forces. The final or immediate next
goal location is formulated as the attractive force acting on
the pedestrian. The attractive force influencing pedestrian α

is described by the following equation:

Fattr
α (vdesired , ê,vα) =

1
τ
(vdesired ê−vα). (1)

where τ is a force relaxation factor (called relaxation time),
vdesired is the desired maximum speed the pedestrian wants
to reach, ê is the unit vector of the desired direction towards
the field source (i.e., the pedestrian or the goal point), and
vα is the current velocity of the pedestrian. Eq. 1 can be
thought of as an acceleration. When vα = 0, then Fattr

α is
maximized, while when vα = vdesired ê, then Fattr

α = 0 with
no further velocity increase. The relaxation time given by τ

is what is responsible for a slower increase in velocity based
on the force or as it decreases the overall acceleration.

The repulsive forces deployed by the model come from
other pedestrians and barriers, where they all exert a force
directed away from themselves. This force from pedestrian β

onto pedestrian α is represented by the following equation:

Fαβ (dαβ ) =−∇dαβ
Vαβ [b(dαβ )]. (2)

where dαβ is the distance between pedestrian α and β , ∇dαβ

is the gradient of the field emitted by a pedestrian at the
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Fig. 2: (a) The change in repellent force field of a pedestrian proportional to its movement speed: a circle when at rest and
an elongating ellipsoid with higher velocity. (b) The conditions for the follow behavior. The value of 30 degrees was chosen
based on experimental trials. (c) The maximum forward velocity allowed depending on how far away the closest pedestrian
is. The values seen are all chosen based on experimental trial data and pedestrian comfort feedback.

given distance, V is an exponential decreasing function with
respect to b taking the shape of an ellipse, given by

Vαβ (b) = Ae−b/B. (3)

where A and B are parameters to tune based on how much
the exponential decrease of the field should be, originally
set to Vαβ (b) = 2.1e−b/0.3, b represents the semi-minor axis
of the ellipse the pedestrian is surrounded by when moving
with some velocity, and is given by

2b =
√
(||dαβ ||+ ||dαβ − vβ ∆teβ ||)2 − (vβ ∆t)2. (4)

where the term vβ ∆t signifies the step size of pedestrian β .
The ellipse grows in size the higher pedestrian β ’s speed is,
but does not change shape with a fixed semi-minor to semi-
major ellipse axis ratio. Then, incorporating Eqs. 3 and 4
into Eq. 2, the repulsive force for pedestrians α and β can
be rewritten into a more descriptive format

Fαβ (dαβ ) = (5)

Ae
−bi

B
||dαβi ||+ ||dαβi −Yi||

4bi
(

dαβi

||dαβi ||
+

dαβi −Yi

||dαβi −Yi||
).

Moreover, one could think of walls and borders to have
a similar repulsive effect on pedestrians, with an additional
repulsive force between pedestrian α and border B

FαB(dαB) =−∇dαBUαB(||dαB||). (6)

where UαB is another decreasing exponential function as in
Eq. 3 tuned for walls and borders.

The direction of pedestrian motion also influences the
forces. As the social force formulas hold proper effectiveness
if observed in the desired direction, unwanted influence from
other directions can be handled by a direction dependent
weighting function

w(ê,F) =

{
1 if ê ·F ≥ Fcos(φ)
c, otherwise,

(7)

where ê is the unit vector, 0 < c < 1 weakens forces acting
behind the pedestrian, and φ is set based off of the effective

angle of vision (2φ ).The final SFM can be formulated as the
summation of all the aforementioned forces:

Fα = Fattr
α (vdesired , ê,vα)+∑

β

w(e,Fαβ )Fαβ (dαβ ) (8)

+∑
B

w(e,FαB)FαB(dαB).

The SFM depends on a strong assumption that all pedestrians
follow the exact same principles when interacting, making it
difficult to be applied in the real-world. In particular, it is
hard to expand elliptical pedestrian personal space shape, it
has non-intuitive backwards motion when pushed head on, it
does not have particular awareness of human formations, and
it is a poor practical solution for lowering repulsive forces
using the direction dependent weighting function. This paper,
aims at overcoming this assumption with a novel Augmented
Social Force Model (ASFM), a robot-pedestrian model more
obedient to human movement as opposed to two way human-
robot interaction grounded in the assumption that currently
most humans are not accustomed to interacting with a robot
pedestrian.

III. METHODOLOGY

In this section, the Augmented Social Force Model
(ASFM) is presented, augmenting the previously described
SFM model. In this way, the assumption that all humans
navigate with the same social primitives is avoided. Five
augmentations are proposed, detailed in the following sub-
sections, to allow for more obedient behavior of a robot
navigating around humans, overcoming the major drawbacks
of the SFM.

1) Pedestrian Personal Space: First, the model is aug-
mented with force fields that are more robust and utilize the
limited first-person POV of a pedestrian. Holding onto the
elliptical force field shape of pedestrians as in the original
SFM, the model is made more responsive by reformulating
the repulsive force from pedestrians into a static force and
a moving force. Thus, the repulsive force is redefined as



Fig. 3: The legged robotic system deployed: a Boston Dynamics Spot quadruped robot, an NVIDIA Jetson Orin AGX, and
a mounted Zed2i RGB-D camera, accompanied by a system integration diagram as implemented on the robot.

follows:

Fαβ−static = AeBx+C (9)

Fαβ−moving = Ae(x−d)B+C, (10)

where A, B, and C are hyper parameters to create a force
field that will allow for smoother encounters than in Eq. 3
and d is the distance from the ellipse centroid to the point
on the ellipse closest to the robot. As the magnitude of a
radial force field is the same for a set distance away from
the center, the x in Eq. 10 represents the distance from the
pedestrian to the robot. The distance d is in turn created from
the measured velocity of the pedestrian observed. The higher
the velocity, the more the ellipse axes grow. The rate of
growth is independent between the semi-minor and the semi-
major axis. Helbing’s notion of step size, specific for each
pedestrian, is difficult to translate to real world and further
motivated the change in the pedestrian repulsive forces. A
visualization of what the pedestrian personal space fields can
be seen in Fig. 2a.

2) Side-Stepping: The second augmentation developed
for the ASFM is a conversion of resistance to sideways
motion as opposed to decreased motion or in extreme cases
backwards motion when facing an oncoming pedestrian
head-on. Such behavioral responses to encountering pedes-
trians head-on typically apply to humans as well, since it is
uncommon for pedestrians to walk backwards. The policy of
side-stepping is accomplished by prohibiting velocity in the
opposite direction of the attractive goal point and by creating
an enforcing effect on the velocity in the perpendicular
direction. The perpendicular movement increase is governed
by a ratio λ =

Fαβ (x)
Fαβ (y)

where x is direction away from goal
and y is direction perpendicular to x. If the resultant velocity
from the external forces point away from the goal point and
the ratio is larger than a threshold, then Fαβ (y) =Fαβ (y)∗λ .

3) Following Behavior: The third augmentation devel-
oped for the ASFM allows to start following a pedestrian
showing the same directional intention, after the model has
encountered any repulsive forces as a means to overcome

freezing or stopping up after having encountered a seemingly
blocked path and then never progress beyond that point.
Following someone else is a very common pedestrian be-
havior when encountering densely populated areas or narrow
pathways. Recognizing a pedestrian as having the same
immediate goal as the robot can be done by analyzing their
direction of motion. Once a pedestrians direction of motion
is determined, the angle between the robot system and the
pedestrian direction can be calculated, and if it is within a
certain range the robot can assume the pedestrian is walking
in the same direction as the robot wants to go. Once a
pedestrian is determined to be fit to follow, the goal is set to
the pedestrians location as to make the robot follow.

When a pedestrian follows other pedestrians through a
crowded area, they stop following anyone as soon as there
is no need for it anymore and resume the pursuit of their
own goal. Therefore the robot must also be able to judge
when to stop following the pedestrian they have started
following. The policy implemented for the follow mode set
a timer when the robot is following someone and they no
longer experience any external repulsive forces – the area
is no longer crowded. Once the timer is up the robot will
again walk towards its original goal. the robot also stops
following a pedestrian if the pedestrian being followed is
more than threshold distance away. A diagram of the full
follow pedestrian procedure can be seen in Fig. 2b.

4) Direction Priority: The fourth augmentation developed
for the ASFM is to negate any force influence from pedestri-
ans moving away from the robot. One of SFM’s shortcom-
ings was its approach of lowering repulsive forces using the
direction dependent weighting function. For a first person
POV, this function is not very reliable as vision is limited.
Annulling any repulsive force coming from pedestrians that
are moving away from the robot requires the robot to log the
position of detected humans and compare their latest logged
position to their current position in order to gauge if the
pedestrian is moving away from the robot. This approach is
very useful for a first person field of view robot as it does not
need to take into consideration the movement of the robot. If



Fig. 4: Setup visualization along with the resultant behavior of a human pedestrian (green), the robot using ASFM (blue),
and the standard SFM (red) in all four navigation scenarios.

the robot is moving and a person is going further away from
the robot from one instance to another, then it means the
pedestrian is walking faster than the robot and it is a valid
assumption to ignore the repulsive forces from the pedestrian.

5) Human Adaptive Velocity Control: The fifth augmen-
tation created for the ASFM regulates the robots velocity
based on the distance of any human. With the robot system
and camera, the SFM model would often experience the max
robot velocity to be too fast for the latency in deceleration
when interacting with other pedestrians. Therefore the last
proposed augmentation to the ASFM is a reduction in max
velocity based on how far away from the robot the closest
detected pedestrian is. This max velocity system creates
a more pedestrian friendly behavior when approaching a
pedestrian head on. An illustration of the max velocity zone
system can be seen in Fig. 2c with values that were deemed
most appropriate through experiments.

IV. EXPERIMENTAL SETUP

A. Robot System Description

The developed system could be applied to any omnidi-
rectional mobile robot. In this paper, a quadruped robot
(Spot) was used, equipped with a ZED2i stereo camera. Even
though robots, such as Spot, have local collision avoidance
onboard, these assume static environments without social
navigation awareness of moving humans; such functionalities
were deactivated when running the ASFM. The robot’s on-
board computer was not used for any high-level navigation,
although an Nvidia Jetson Orin 32GB edge GPU was used
onboard to run the ASFM, mainly needed for the human-
localization. For inferring the position and velocities of
humans around the robot, the StereoLabs tailored human
pose detection model for the ZED2i stereo camera. The
system runs in real-time at 15 frames per second for human

pose detection. On the robot, the ZED2i camera is placed
on a custom stand on the robot’s back that elevates the
stereo camera to 1.1m above the ground to get a better view
of pedestrians close to the robot. The SFM itself does not
require GPU to run in real-time. The system integration can
be seen in Fig. 3.

The path planning approach of the navigation model was
based on predetermined checkpoints that have been recorded
in the robot’s odometry frame in advance, for the given
environment that the robot is set to navigate through. This
type of navigation was chosen to replicate an inspection
task or a preset delivery route. Thus the robot goes from
checkpoint to checkpoint with the condition of coming within
one meter distance away from the coordinates of the current
checkpoint goal before it sets the goal to the next checkpoint.

B. Navigation Scenarios Setup
We tested ASFM vs SFM over four scenarios. To invoke

all the different pedestrian interaction scenarios ASFM can
react to, the setup involved a narrow 2.1m wide hallway,
where the robot had to maneuver around various crowd
formations and common interactions towards a goal point
located 8.5m from its starting position. A hallway restricts
movement except in the direction towards the next goal point
and so was chosen as the most convenient test location. The
four experiments were attempted 20 times for each algorithm.

The first navigation scenario was aimed at testing the abil-
ity of the ASFM compared to SFM to involve an oncoming
pedestrian, while maintaining a set trajectory towards the
goal point. This scenario was designed to test the model’s
effectiveness in mimicking human-like behavior in terms of
sidestepping to avoid a collision without significant reduction
in speed.

In the second navigation scenario, the objective was to
evaluate the ASFM vs the standard SFM in their ability to



Fig. 5: Visual illustration of a robot pedestrians using ASFM for all four experimental scenarios. The green line illustrates
the path the robot takes, the red pointer is the goal pose, and the green circle signifies position of momentary stop.

navigate through static crowd formations within a confined
space. This scenario involved a robot encountering a static
crowd of three individuals blocking a significant portion
of the hallway, which closely mimics real-life situations
where pedestrians must maneuver around stationary groups.
The real-life equivalent would typically involve a pedestrian
choosing a path that offers the least resistance and space
consumption. The experiment aimed to assess the models’
performance in identifying and utilizing the most viable
pathway around the static crowd to reach a designated
endpoint.

In the third navigation scenario, the complexity increased
as we aimed to evaluate the model’s performance in situa-
tions where the robot had to navigate through an environment
with an obstructed pathway, requiring the robot to follow a
pedestrian to find a clear path. This scenario was intended
to mimic real-world situations where a pedestrian navigates
through crowded areas by following others.

In fourth navigation scenario, the focus was on evaluating
the ASFM and standard SFM in complex dynamic environ-
ments involving two pedestrians with differing speeds and
intentions. Specifically, the robot faced challenges including
an unseen pedestrian crossing its path unexpectedly and
another pedestrian moving slower than the robot itself. This

setup aimed to simulate real-world cases where a robot must
dynamically adjust to sudden changes in its environment and
overtake slower-moving pedestrians without compromising
social comfort or safety.

V. RESULTS

An overview of the outcomes from the four navigation
scenarios utilizing the ASFM, as depicted in Figs. 4 and 5.
Additionally, we present a comparative analysis of the
ASFM’s performance against that of the traditional SFM,
illustrated in Fig. 6. To determine the statistical significance
of the ASFM’s enhanced performance, paired T-tests were
executed, with the results detailed in Table I. The assessment
of pedestrian comfort, a critical factor in social robotics, was
predicated on the criterion that individuals were not required
to deviate substantially from their intended paths due to
the robot’s presence. This qualitative measure was gauged
through systematic observations. Further, comprehensive
video demonstrations showing the ASFM’s navigational
strategies and interactions can be accessed via the following
link: https://rpl-cs-ucl.github.io/ASFM.

Scenario 1: Both the ASFM and SFM secured a 100%
goal arrival rate, aligning with the experiment’s simplicity.
However, ASFM outperformed SFM in efficiency, evidenced



Error bars: 95% confidence interval.

Fig. 6: Performance comparison between ASFM and SFM in time to goal, average velocity, and the trajectory length. ASFM
performs faster at a higher velocity for simple scenarios, and is slower in more complex scenarios which indicates a lower
level of intrusion on surrounding pedestrians. SFM is not presented in Scenario 3, as it had 0% success rate.

by quicker goal attainment, enhanced path efficiency, and
reduced path irregularity, as depicted in Fig. 6. Table I
shows significant improvements in ASFM’s time to goal,
trajectory length, and average velocity for scenario 1, with
T-statistics of 33.464,−57.109, and 20.360, respectively.
Notably, ASFM demonstrated improved social navigation
by facilitating more natural sidestepping and maintaining
pedestrian comfort without necessitating path alterations,
thus mirroring more human-like behaviors. These findings
underscore the enhanced performance of the ASFM in facil-
itating more efficient and socially acceptable robot navigation
in environments with pedestrian traffic.

Scenario 2: While both models avoided collisions, the
ASFM demonstrated a superior arrival rate of 75% compared
to the SFM’s 40%, highlighting the ASFM’s enhanced ability
to interpret and navigate through crowded spaces. ASFM
exhibited significant improvements in time to goal and av-
erage velocity with T-statistics of T = 5.855 and T = 4.085.
Despite this, both models occasionally struggled with accu-
rately interpreting the crowd’s formation, leading to varied
success rates and indicating a potential area for improvement
in crowd understanding. The findings from this scenario
underline the challenges and complexities associated with au-
tomated navigation through densely populated environments,
showcasing the ASFM’s relative advantage in handling static
human obstacles compared to the conventional SFM.

Scenario 3: The standard SFM failed to navigate through
the crowd with an arrival rate of 0%. The ASFM, however,
achieving an 85% success rate in following a pedestrian and
effectively bypassing the crowd. The failure of SFM was
mainly due to the complexity of having static and moving hu-
man crowds, the SFM cannot deal without side stepping. The
success of the ASFM can be attributed to its enhanced ability
to interpret pedestrian intentions and movements, allowing
it to utilize social cues to navigate through tight spaces.
However, there were instances of failure due to limitations in
pedestrian detection, indicating areas for future improvement
in sensor capabilities and model responsiveness. Overall, this
scenario underscored the ASFM’s superior performance in
complex social navigation tasks, showcasing its potential for

real-world applications in crowded environments.
Scenario 4: Both models maintained a 100% arrival rate.

However, the SFM struggled with evasive maneuvers and
maintaining an appropriate distance from the slow-moving
pedestrian, often resulting in socially awkward or uncom-
fortable encounters. This was primarily due to the SFM’s
limitations in responding non-intrusively to the oncoming
pedestrian, compelling them to alter their trajectories. In con-
trast, the ASFM exhibited superior adaptability, maintaining
a safer distance and implementing more natural sidestepping
behaviors in response to crossing pedestrians. Statistical anal-
ysis revealed that the ASFM achieved significant improve-
ments in time to goal (T = −2.508) and average velocity
(T = 5.580), although no significant difference was found in
trajectory length (T = 1.808) between the two models. This
suggests the ASFM enhances social navigation but needs
further optimization for better efficiency and adaptability in
dynamic settings.

TABLE I: T-test results for, time, velocity, and travel distance.

Parameter Navigation Scenario T-statistic P-value
Time to Goal 1 33.464 < 0.05

2 5.855 < 0.05
3 n/a n/a
4 -2.508 < 0.05

Trajectory Length 1 -57.109 < 0.05
2 -3.535 < 0.05
3 n/a n/a
4 1.808 ns

Average Velocity 1 20.360 < 0.05
2 4.085 < 0.05
3 n/a n/a
4 5.580 < 0.05

ns = no significance.
n/a = not applicable

These findings underscore the ASFM’s capacity to sig-
nificantly improve robotic navigation in pedestrian settings,
demonstrating its utility in enhancing key navigation metrics
across varied scenarios. The mixed outcomes in navigation
scenario 4 highlight the model’s context-sensitive perfor-
mance, suggesting further model optimization is necessary
for consistent across-the-board improvements.



VI. CONCLUSION AND FUTURE WORK

A model for social navigation using vision was developed
for mobile robots, implemented on a quadruped and enabling
safe and comfortable movement through pedestrian environ-
ments. Improvements over the standard SFM were made by
incorporating the ASFM, addressing limitations in pedestrian
formation awareness and sensory input. Enhancements such
as direction prioritization, pedestrian path avoidance, and
the ability to follow a guide through dense crowds were
included. Real-world applicability was increased, pedestrian
reactions were reduced, and human-robot interaction was
improved. In future work the generalization to more diverse
and larger-scale environments is aimed, as well as enhancing
the model’s scalability to more complex environments or
higher pedestrian densities.
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