
DiPPeST: Diffusion-based Path Planner for Synthesizing Trajectories
Applied on Quadruped Robots

Maria Stamatopoulou∗, Jianwei Liu∗, and Dimitrios Kanoulas

Fig. 1: DiPPeST: (top) Consecutive robot camera frames with the overlaid generated global (red) and local (green) trajectories,
captured in real-time; (bottom) A quadruped robot following the planned path. Blurriness is due to robot fast motion.

Abstract— We present DiPPeST, a novel image and goal con-
ditioned diffusion-based trajectory generator for quadrupedal
robot path planning. DiPPeST is a zero-shot adaptation of our
previously introduced diffusion-based 2D global trajectory gen-
erator (DiPPeR). The introduced system incorporates a novel
strategy for local real-time path refinements, that is reactive
to camera input, without requiring any further training, image
processing, or environment interpretation techniques. DiPPeST
achieves 92% success rate in obstacle avoidance for nominal
environments and an average of 88% success rate when tested
in environments that are up to 3.5 times more complex in pixel
variation than DiPPeR. A visual-servoing framework is devel-
oped to allow for real-world execution, tested on the quadruped
robot, achieving 80% success rate in different environments and
showcasing improved behavior than complex state-of-the-art
local planners, in narrow environments. Website: https://rpl-
cs-ucl.github.io/DiPPeSTweb/

I. INTRODUCTION

Mobile robots have been gaining increased popularity due
to their multi-purpose applications, varying from industrial
production sites to search-and-rescue tasks [1]. To success-
fully complete such tasks, real-time autonomous naviga-
tion in complex environments is required, rendering path
planning an important open challenge [2]. Many works
focus on generating global paths to provide a comprehensive

The authors are with the Department of Computer Science,
University College London, Gower Street, WC1E 6BT, London,
UK. Dimitrios Kanoulas is also with Archimedes/Athena RC,
Greece. {maria.stamatopoulou.21,jianwei.liu.21,
d.kanoulas}@ucl.ac.uk

∗equal contribution
This work was supported by the UKRI Future Leaders Fellowship

[MR/V025333/1] (RoboHike) and the CDT for Foundational Artificial
Intelligence [EP/S021566/1]. For the purpose of Open Access, the author
has applied a CC BY public copyright license to any Author Accepted
Manuscript version arising from this submission.

path from a start to a goal point, assuming fully known
and static environments [3], [4] however, these methods
cannot adapt in dynamic or unknown ones. Studies on
local planners aim to address this limitation by utilizing
real-time sensory data, enabling robots to make immediate
decisions and adapt their paths in response to dynamic
changes in their surroundings. However, these approaches
may sacrifice the optimality of the paths due to their myopic
decision-making process. Hence, the ideal solution lies on
the approach where the global planner sets an initial course
path, and the local planner refines this path in real-time,
ensuring both efficiency and adaptability. Learning from
demonstration methods using image-conditioned Diffusion
has demonstrated promising results in trajectory planning,
primarily in the domain of manipulators [5], [6], [7], with
few works extending these principles to mobile robot path
planning [8], [3]. Diffusion policies iteratively calculate the
action-score gradient based on visual observations, allowing
for multi-modal action distribution representation, scalability
to larger output spaces, and training stability while preserving
expressive distribution capabilities [5]. However, training a
diffusion model is computationally expensive and timely,
requiring large datasets, which makes their adoption more
challenging than other methods.

In this paper, we present a novel approach to path planning
by extending our global Diffusion-based 2D path planner,
DiPPeR [3], through a zero-shot adaptation that integrates
an adaptive local path planner with no further training or
fine-tuning. We introduce a robot path planning framework
utilizing RGB data, complemented by a visual servoing
pipeline for converting planned paths into actionable robot
movements. We test our method on a real-world quadruped
robot and compare the performance with state-of-the-art

https://rpl-cs-ucl.github.io/DiPPeSTweb/
https://rpl-cs-ucl.github.io/DiPPeSTweb/

local planners both in static and dynamic environments. Our
primary contributions include:

1) A novel image-conditioned diffusion path planner for
mobile robots for real-time path refinements.

2) A zero-shot adaptation of DiPPeR to incorporate local
path planning without re-training, fine-tuning, image
pre-processing, or environment contextual or geometric
information (e.g. semantics, obstacle recognition).

3) A visual servoing real-world deployment stack.
The remainder of the paper is structured as follows. In

Sec. II, we briefly introduce literature in local path planning
relevant to our proposed method. In Sec. III, we provide
the necessary background knowledge, including a brief
description of our previously introduced system, DiPPeR.
In Sec. IV, we describe our proposed method, with our
experimental results presented in Sec. V. Finally, in Sec. VI,
we summarize the results and conclude with some future
work.

II. RELATED WORK

Local path planning and visual servoing are extensively
researched areas, as they enable mobile robots to make real-
time decisions and adapt to dynamic environments efficiently.
We briefly review these methods from both traditional and
diffusion-based perspectives.

A. Local Path Planning and Visual Servoing

Traditional local path planning methods typically repre-
sent the environment using geometric primitives to identify
traversal areas and obstacles [9], [10], [11]. However, these
approaches often lack context awareness, characterized as the
algorithm’s inability to understand the environment beyond
physical obstacles and free spaces and assume a static envi-
ronment. This leads to limited environment interpretation and
exponentially increasing computational demands for more
complex environments [12]. One commonly used variation
of geometric planners is the Dynamic Window Approach
(DWA), where the robot’s velocities are sampled to generate
a trajectory optimized based on obstacle avoidance, reaching
the target, and maintaining base velocity [13], [14], [15].
Chang et al. [16] improved on the original DWA evaluation
functions by employing Q-learning to adaptively learn the
parameters, enhancing global navigation performance and ef-
ficiency. However, the method relies on the balance between
effectiveness, speed, training quality and the complexity of
the environment, which might limit its effectiveness in unpre-
dictable or complex scenarios. More recent works attribute
contextual information to gain a better understanding of
the environment [17]. Roth et al. [12] introduced a learned
local path planning approach, utilizing both geometric and
semantic information to identify terrain traversability and
obstacles effectively. Crespo et al. [18] proposed a path-
planning approach employing co-safe Linear Temporal Logic
over perception-based atomic predicates, enabling the gen-
eration of uncertain semantic maps for navigation. While
semantic-driven sampling-based algorithms offer promising
results, they heavily rely on the accuracy of the semantic

map and the quality of sensor data, and they suffer from
increased computational complexity under severe perceptual
uncertainty. Our method aims to address the limitations of
both semantic and geometric methods by not relying on
any environment representation other than visual input and
avoiding scaling computational complexity, as demonstrated
in our previous work [3].

Visual servoing provides a means of adaptively navigat-
ing based on visual cues [19]. Traditional visual servoing
techniques have been integrated with visual cognition to-
wards path planning. For instance, closer to our method,
Rodziewicz-Bielewicz et al. [20] utilize YOLO and real-
time image processing from a central camera to determine
the robot positions and orientations for precise trajectory
planning and execution in indoor environments. However, the
method is constrained by specific environmental conditions
and the generalization capabilities of YOLO in complex
environments. Zhu et al. [21] deploy a visibility-based search
tree with a greedy search strategy that segments results
based on field-of-view (FOV) constraints, ensuring the fea-
ture points remain within the camera’s view. The approach
assumes consistent visibility and the need to keep feature
points within the FOV at all times, which may not be
feasible in highly dynamic environments or in situations
with occlusions, potentially leading to servo failures. Our
methodology relaxes these dependencies, facilitating global
and local path planning interaction. This ensures alignment
with the overarching objective while simultaneously allowing
for local refinements.

B. Diffusion for Path Planning

Diffusion methods have gained popularity in the domain of
path planning, with several works demonstrating promising
results. Hong et al. [22] deploy diffusion maps to find local
paths for reaching a goal while avoiding collisions with
dynamic obstacles simultaneously, by computing transition
probabilities between grid points. Liu et al. [3] introduce
an image and goal-conditioned diffusion-based global path
planner, trained using a CNN, showcasing great gener-
alization and constant inference speed for various map
types. Sridhar et al. [8] present a unified robotic navigation
diffusion policy that handles task-oriented navigation and
task-agnostic exploration in unseen environments, exhibiting
significant performance improvements and computational
efficiency compared to existing approaches. We aim to
leverage the advancement made in this diffusion-based path
planning realm to develop our trajectory generator. While
all these works require training of diffusion models, which
can be computationally expensive and require large training
datasets, our proposed approach does not require further
training or fine-tuning of a diffusion policy.

III. PRELIMINARIES

Path planning involves computing a trajectory for a robot
to follow, by optimizing for properties such as finding a
collision-free, shortest, and smoothest route between start
and goal positions. As elaborated in Sec. II, there are several

Fig. 2: Examples of DiPPeR’s training dataset: 100 × 100
random solvable maps with examples of end-to-end trajec-
tories, generated through A∗.

approaches to solving path planning. For relevance to our
method, we expand on our previous work in probabilistic
diffusion-based path planning (DiPPeR [3]), which serves as
a baseline for the developed DiPPeST system.

DiPPeR is an image-based diffusion model designed to
plan global paths from a starting to a goal position, given a
2D map in which space is classified as free or occupied.
Trained on images of random mazes and ground truth
trajectories generated by A∗ path planning, DiPPeR is able
to generate paths through a Denoising Diffusion Probabilistic
Model (DDPM) [23] . A set of 2D path trajectories Ak

t

with added Gaussian noise and the map image observation
O are given as input, K denoising iterations are performed
via gradient descent, and a noise-free path trajectory A0

t is
produced:

Ak−1
t = α(Ak

t − γϵθ(O,Ak
t , k) +N (0, σ2I)), (1)

where ϵθ is the noise prediction network (1D temporal CNN),
and α, γ, σ define the scheduling learning rate.

During training, Gaussian noise ϵk is iteratively added to
the clean trajectory A0

t . The noise predictor ϵθ is trained
using gradient decent of the mean squared error L =
MSE(ϵk, ϵθ(O,A0

t + ϵk, k)). DiPPeR achieves an average
speedup of 23× compared to state-of-the-art global path
planning methods [3]. However, the method faces certain
constraints. Initially, the path step number required for the
denoising process must be empirically determined and manu-
ally selected for each experiment. This process is sub-optimal
as it requires trial and error to determine the optimal length.
Additionally, due to the inherent global planning nature of
the approach, the goal position is manually chosen and re-
mains unaltered throughout the experiment. This fixed setting
proves suboptimal in scenarios requiring the dynamism of a
local planner or in cases necessitating refinements.

IV. METHOD

In this work, we utilize DiPPeR for global path and end-
to-end trajectory generation while addressing its existing
limitations. We further modify the framework to introduce
DiPPeST, a diffusion-based local path planner for adaptive
real-time local refinements leveraging visual input. Addition-
ally, we incorporate a customized visual servoing strategy to
ensure efficient execution of real-world paths. DiPPeST is a
zero-shot adaptation of DiPPeR, requiring no further training
or fine-turning while introducing a novel local planning
framework.

A. Global Planner

Firstly, our method involves the generation of a global
path plan based on RGB input camera data. This path is
generated via DiPPeR, utilizing the first captured frame from
the robot’s onboard camera which is positioned at it’s front,
facing towards the goal. The model generates a feasible
path that avoids all obstacles while aiming to reach the set
goal, by maintaining local uniformity in trajectory generation
and traversing through pixels with consistent intensity levels.
Unlike DiPPeR’s original method, a map of the environment
is not required, and planning happens directly through the
RGB frame of the camera. Despite significant variations in
the input images, DiPPeR demonstrates zero-shot adaptation
to the robot’s perspective and RGB image inputs despite
being initially only trained on top-down grayscale maze
images (Fig. 2). This transferability likely stems from the
models’ property to prioritize the generated trajectory’s con-
sistency and goal-reaching condition and its ability to learn
color gradient-based features through ResNet, which are
transferable from grayscale to RBG. Further exploration of
the model’s generalization capabilities is provided in Sec. V-
A (also demonstrated in Fig. 6).

B. Local Planner

Given the generated global path, frame-to-frame local path
adjustments are required to better navigate around obstacles
and adapt to dynamic environments as the robot progresses
toward its goal. To address this, we introduce DiPPeST,
which takes an RGB image as input and outputs a 2D
local goal position along with a 2D feasible collision-free
trajectory to be followed, all within the camera frame. The
method involves tracking the global path waypoints and the
global goal position within individual local camera frames.
At each frame, a strategy is devised to select the optimal
waypoint, and a region of interest (ROI) is created from the
robot’s current position to the selected waypoint position.
Processing within this ROI determines the optimal local goal
position for the robot to reach in the current frame and
DiPPeR generates the feasible path to the goal. An overview
of DiPPeST is illustrated in Fig. 3.

1) Waypoint Tracking: We utilize the Lucas-Kanade opti-
cal flow estimation with the pyramidal approach for tracking
the global path features across frames [24]. The method
assumes that optical flow remains constant within a local
neighborhood of pixels. Let Ix and Iy denote the gradients
of the image in the x and y directions, respectively, and let It
represent the temporal gradient between consecutive frames.
The linear optical flow vector (u, v) is given by:

Ix · u+ Iy · v = −It (2)

This can be estimated by solving the system of linear
equations for each pixel via the pyramidal approach, i.e.
building an image pyramid where each level is a down-
sampled version of the previous one. The optical flow is
estimated at each level iteratively. The waypoints are then
tracked by individual frames as seen in Fig. 3-C.

Fig. 3: DiPPeST process of generating the local path and correcting global path failure. DiPPeST takes an input camera
frame (A) and utilizes DiPPeR to generate a global path (B) and the waypoints. These are tracked at each input frame (C),
and the optimal waypoint is selected. At each frame a, ROI is created around the current position and the waypoint and the
optimal local goal position (D) within the ROI is selected (red cross) to avoid assigning the goal close to the obstacle due
to (C) waypoint suboptimal positioning. DiPPeR is then used to generate a path to the goal position (E). Low resolution
images are displayed representing the exact output of the diffusion model.

2) Intermediate Waypoint Selection: At each frame, the
optimal waypoint to follow is determined based on two
conditions: (a) the half-point distance dist from the current
position to the furthest away waypoint and (b) the highest
similarity sim to the direction vector dir of the goal position.
This ensures that for each frame, the planned trajectory will
aim toward the goal position while allowing for a significant
look-ahead distance for refinements. For condition (a) the
Euclidean distance dist is calculated between the current
position pcurr and all n waypoint positions pway as:

dist(n) =

√√√√ n∑
i=1

(pcurr[i]− pway[i])
2. (3)

The median distance is then selected as the optimal waypoint
position. Choosing the median distance waypoint helps avoid
myopic local decisions that may be sub-optimal on a global
scale. For condition (b), the dot product between the current
position pcurr and all n waypoint positions pway is calcu-
lated as follows:

dir = pcurr − pway (4)

pnorm =
dir

∥dir∥2
, gnorm =

g
∥g∥2

(5)

sim = pnorm · gTnorm (6)

where pnorm is the norm direction, g represents the goal
position, gnorm is the norm goal, and · the dot product.
Finally, the next waypoint i (pway[i]) with the median
distance dist and highest similarity sim is chosen as the
next intermediate goal.

3) ROI Processing and Goal Selection: To ensure that the
local goal is set optimally within a traversable region and to
account for the possibility of a waypoint being incorrectly
positioned within an obstacle, we further condition its selec-
tion. A ROI is defined in the camera frame, spanning between
the current robot position and the selected intermediate

waypoint, with the ROI size being variable based on the
distance between the points. This ROI segment is utilized
to assess the variation in pixel intensities. Let pxstd be the
standard deviation of pixel values in each color channel:

pxstd =

√√√√ 1

N

N∑
i=1

(ROIi −ROI)2 (7)

where N denotes the number of pixels, ROIi is the pixel
value at position i and ROI is the mean pixel value in each
color channel. The normalized standard deviation (pxvar) is
then obtained by dividing pxstd by the maximum possible
pixel value, typically 255 for 8-bit images. This serves as a
quantitative measure of intensity variation within the ROI.
The value of pxvar is used in Sec. IV-B.4 to determine the
number of path steps during the denoising process.

To determine the local optimal goal position, the most
common pixel intensity pxint within the ROI is obtained by
calculating the mode of the mean pixel intensity px within
the ROI, as described in Eq. 8. To maintain consistency
across frames, the previously selected pixel intensity px−1

pint

serves as a prior and is used as a tolerance value τ within
which the new pxint should be set, to maintain local consis-
tency for the diffusion model.

pxint = mode
(
{px | px ∈ ROI, |px− px−1

int | ≤ τ}
)

(8)

Also, in the case that the ROI is predominantly occupied
by obstacles, the use of px−1

pint ensures that the local goal is
still set in a traverisble pixel, as the new goal pixel intensity is
limited to a certain tolerance. The optimal pixel px∗ needs
to have intensity pxint while also being the closest to the
waypoint position, ensuring that the selected goal does not
deviate significantly from the global path. The px∗ is chosen
as the next local goal, and its coordinates are scaled back to
the entire image frame. An example of this correction is
visualized by the red cross in Fig. 3-D.

4) Local Path Generation: After the new goal position
is selected, DiPPeR is utilized to generate the feasible path,
involving path step selection and path correction. Firstly, the
path step number ps is selected through a combination of the
Euclidean distance between the current position to the local
goal position, pxd and the pxvar within the ROI following:

ps = pxd + αe(10×pxvar) (9)

The use of this method addresses DiPPeR’s limitation of
manually selecting the denoising vector length, which is
now set equal to ps, and allows the length to increase
exponentially as the variation of pixel intensity increases,
thereby providing adaptation space scalable to obstacle den-
sity. The step increase is not significant large to affect the
planning time. This step is essential for DiPPeST as local
planning necessitates higher detail to avoid obstacles and
can significantly differ from the global path due to variations
in the input frames received, as opposed to global planning,
where less detail is sufficient since the local planner can later
address finer adjustments. We set α, the scaling coefficient,
equal to 4, to agree with the input dimensions of the network.
In cases where the local trajectory fails to avoid obstacles, a
mitigating method is implemented to allow for re-planning,
ensuring that the robot follows only feasible trajectories. The
generated local trajectory is evaluated within the ROI to
ensure that it does not traverse pixels whose intensity falls
outside of the tolerance range compared to the local goal
position pixel intensity.

C. Path Following

To execute the local paths generated by DiPPeST in the
real world, the trajectory coordinates need to be de-projected
from 2D image coordinates (x, y) obtained by the camera
mounted on the robot’s head into 3D world coordinates.
Given the depth d from the depth reading for pixel coordinate
(i, j) of the camera:

Deproj(i, j, d) =
(
d · UModel

(
(i, j)− P

F

)
, d

)
(10)

where P = (px, py) is the principal point F = (fx, fy) the
focal length, both intrinsic parameters of the camera, UModel
represents the model for lens distortion, and d is the depth
obtained directly from the depth image. The resulting de-
projected 3D local path is then executed by a path follower
module [11], which generates velocity commands from the
input path. These commands utilize odometry readings to
adjust the robot’s movement in real time, ensuring accu-
rate adherence to the planned trajectory. Finally, the robot
driver module translates the velocity commands into motor
commands, considering the robot’s joint states to drive the
hardware toward the desired state as defined by the 3D
trajectory. A twist-command correction is implemented to
ensure the robot’s view does not significantly divert from
the global goal position. An overview of the framework is
depicted in Fig. 4.

Fig. 4: Visual servoing framework for real-world robot path
execution. DiPPeST 2D trajectories within RGB frame are
de-projected into 3D world coordinates. The path follower
translates the trajectories into velocity commands, and the
robot module into motor commands to drive the robot
towards the desired path.

V. RESULTS

A. Performance Evaluation

We conduct experiments to assess the robustness of
DiPPeST against varying input conditions and validate
its performance and generalization capabilities in out-of-
distribution cases. These experiments are performed using
the RGB frames obtained through a RealSense D435i cam-
era. We focus on a) variation of the traversable region and
obstacle pixel intensity, b) change of input image size, and c)
variation of camera point-of-view (PoV), as seen in Fig.6. We
quantify the effect as the average percentage of successful
collision avoidance attempts for all obstacles in the scene,
over 10 trials for each case. DiPPeST is executed on a
computer with an Nvidia RTX 3090 GPU and has a constant
inference time of 0.42s per frame, as it depends on DiPPeR’s
denoising time of 0.4s.

We examine the impact of varying the color of the
traversable regions and obstacles in DiPPeST trajectory
generation performance, as DiPPeR was only trained on
black and white images (Fig. 2), with white representing
the feasible path and black the obstacles. The color of
the traversable region is varied by adding multi-color pads,
introducing varying pixel intensities within the ROI. The
mean variance values are converted into percentage val-
ues to standardize comparisons. DiPPeST’s performance is
quantified by assessing the correlation between changing the
percentage ROI pixel variance and the success rate. DiPPeST
achieves a mean success rate of 85% for generating suc-
cessful trajectories, showing good generalization capabilities

when considering the training dataset. It successfully avoids
obstacles with a 92% success rate for an ROI variance of
less than 30%, representing the most common environmental
scenario. Increasing pixel intensity variation results in a 19%
decline for the edge case of ROI variance exceeding 80%,
indicating a slight negative trend. This trend could potentially
be corrected by introducing colorful maps into the training
dataset.

Fig. 5: The effect of variation of a) floor and obstacle color,
b) input image size, and c) camera PoV, over DiPPeST %
success rate.

We further evaluate the impact of image PoV on the
success rate, considering that DiPPeR is trained on maps
with a top-down PoV. DiPPeST should generalize to input
images of varying PoV, reflecting variations in camera angle
and heights in real-world scenarios. To assess this, we
conduct the experiments on recorded RGB frames obtained
by changing the angle and height of the position of the
camera, as depicted in Fig.6a. DiPPeST generates successful
trajectories with an average 87% success rate for all PoV
variation experiments. There is a slight negative trend as the
PoV angle changes from top-down to robot-level with an
overall 13% decline in success rate, which could be corrected
by refining the training dataset.

We also validate DiPPeST’s performance for image inputs
of variable sizes, as DiPPeR is trained on maps of the same
size. DiPPeST receives camera input, which may have a
variable FoV based on hardware specifications. This concern
is based on the compression ratio variations occurring when
the image input is passed on the encoder network. We
examine images of varying sizes, including those of the
same size as the training data set [100, 100, 3], images taken
from an iPhone 11 camera [3264, 2448, 3] and a RealSense
camera [720, 1280, 3], as seen in Fig.6b. However, there is
no significant effect on the success rate, with all scenarios
displaying a 92% generalization success rate.

Overall, DiPPeST achieved an average success rate of 92%
for standard environments, surpassing DiPPeR’s validation
performance. Additionally, it achieves an overall generaliza-
tion success rate of 88%. These results are summarized in
Fig. 5.

We also investigate the edge cases where the obstacles are
similar in pixel intensity to the traversable region. DiPPeST’s
trajectory generation capabilities for these cases are shown in

(a) Variation of Input Image PoV

(b) Variation of Input Image Size

(c) Edge Cases

Fig. 6: Illustration of DiPPeST generated trajectories for
cases of variation of a) of camera PoV: top-down, human-
eye, robot-eye, b) input image size: training dataset, iPhone
11, RealSense D435i, and c) edge cases. Low resolution
frames correspond to the compressed images as received for
the denoising process.

Fig. 6c. In the first subfigure of Fig. 6c, the obstacle and the
floor have an average pixel intensity difference of 26% for all
three channels, and on the second subfigure, a difference of
28%. Given that the intensity difference of DiPPeR validation
maps is 97%, DiPPeST showcases a 73% superiority in
generalization capabilities with an improvement factor of 3.5.

B. Real-World Evaluation

For real-world evaluation, the Unitree Go1 robot is used
with DiPPeST, taking as input images from an Intel Re-
alSense D435i camera mounted on the front at an angle
of 10 degree depression. For all experiments, the global
plan is generated from the first frame (Sec. IV-A) while
the robot remains stationary. We test DiPPeST’s performance
for a) static environments and b) dynamic environments by
measuring the rate of successful attempts in avoiding obsta-
cles and reaching the goal position across all attempts. For
static environment experiments, we test our method in lab
conditions by constructing a course with stationary obstacles.
For dynamic environments, walking robots are added within
the scene to introduce dynamic obstacles. Each experiment is
performed for 3 different instances of each environment, with
increasing obstacle density and decreasing obstacle distance
to showcase avoidance in narrow environments. The results
are presented in Table I.

DiPPeST achieves an overall success rate of 80% for all

Environment sCA sGR dCA dGR %mSR
DiPPeST 85 79 78 79 80.3
IPlanner 76 82 67 78 75.6
NoMad 83 71 83 73 77.5

TABLE I: This table presents DiPPeST real-world Collision
Avoidance (CA) and Goal Reaching (GR) mean % success
rates (%mSR), compared to other SOTA methods.

environments, showing improved behavior against IPlanner,
a geometric-based local planner and NoMad, a diffusion-
based local planner. These SOTA works were selected as
they generate local paths through RGB input, however both
methods require extensive specific training for local planning
as opposed to DiPPeST that is a zero-shot adapattion of DiP-
PeR which was trained on synthetic data. IPlanner displayed
capabilities in reaching the goal, however it often stumbled
upon obstacles while doing so. On the other hand, NoMaD
demonstrates successful obstacle avoidance in both dynamic
and static environments, but it would get stuck when reaching
too close to a non-traversable area. Both SOTA methods
avoid the narrow passage and redirect following a safer and
less efficient path. An example of an executed DiPPeST path
is depicted in Fig.1. DiPPeST’s failure case in goal reaching
occurred when the global waypoint disappeared from the
view of many consecutive image frames, hence the local plan
was continuously deviating from the global goal. Another
limitation arises due to the restrictions on re-planning speed,
which might lead to a collision if the speed of the dynamic
obstacles is high.

VI. CONCLUSION
In this work, we introduced DiPPeST, a novel image-

guided diffusion-based method for synthesizing both global
and local paths for mobile robots. DiPPeST achieves a 92%
success rate for simple environments and an average of
88% success rate in generalization and edge case handling
for environments up to 3.5 times harder than DiPPeR. We
implement visual-servoing to allow real-robot execution of
the novel local planning framework, achieving 80% success
rate in different environments and showcasing better behavior
than two SOTA planners in a narrow passage experimen-
tal set-up. We identify that re-planning speed depends on
inference time, which we aim to speed up by improving
the denoising process. Additionally, goal-reaching is limited
by the requirement of the global goal being visible within
each frame, which we plan to address through the utilization
of memory mechanism in the model or the use of Visual
Odometry to better track features beyond a single frame. Our
next steps focus on incorporating the kinodynamic properties
of the robot during the trajectory generation process to
achieve feasible real-world plans, which will enable the
planner to navigate more complex environments with greater
accuracy and efficiency.

REFERENCES

[1] N. Kottege and et al, “Editorial: Towards real-world deployment of
legged robots,” Frontiers in Robotics and AI, vol. 8, 2022.

[2] K. Cai, C. Wang, J. Cheng, C. W. De Silva, and M. Q.-H. Meng,
“Mobile Robot Path Planning in Dynamic Environments: A Survey,”
arXiv preprint arXiv:2006.14195, 2020.

[3] J. Liu, M. Stamatopoulou, and D. Kanoulas, “Dipper: Diffusion-based
2d path planner applied on legged robots,” in IEEE International
Conference on Robotics and Automation (ICRA), 2024.

[4] J. Liu and et al, “ViT-A*: Legged Robot Path Planning using Vision
Transformer A*,” in IEEE-RAS 22nd International Conference on
Humanoid Robots (Humanoids), 2023, pp. 1–6.

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion Policy: Visuomotor Policy Learning via Action Diffusion,”
in Robotics: Science and Systems (RSS), 2023.

[6] J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion
Planning Diffusion: Learning and Planning of Robot Motions with
Diffusion Models,” arXiv preprint arXiv:2308.01557, 2023.

[7] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with Dif-
fusion for Flexible Behavior Synthesis,” in International Conference
on Machine Learning, 2022.

[8] A. Sridhar, D. Shah, C. Glossop, and S. Levine, “Nomad: Goal masked
diffusion policies for navigation and exploration,” 2023.

[9] D. Kanoulas and et al, “Curved Patch Mapping and Tracking for Irreg-
ular Terrain Modeling: Application to Bipedal Robot Foot Placement,”
Robotics and Autonomous Systems, vol. 119, pp. 13–30, 2019.

[10] R. Saeed, D. R. Recupero, and P. Remagnino, “A boundary node
method for path planning of mobile robots,” Robotics and Autonomous
Systems, vol. 123, p. 103320, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889018307310

[11] F. Yang, C. Wang, C. Cadena, and M. Hutter, “iplanner: Imperative
path planning,” 2023.

[12] P. Roth, J. Nubert, F. Yang, M. Mittal, and M. Hutter, “Viplanner:
Visual semantic imperative learning for local navigation,” 2023.

[13] D. H. Lee, S. S. Lee, C. K. Ahn, P. Shi, and C.-C. Lim, “Finite
distribution estimation-based dynamic window approach to reliable
obstacle avoidance of mobile robot,” IEEE Transactions on Industrial
Electronics, vol. 68, no. 10, pp. 9998–10 006, 2021.

[14] M. Missura and M. Bennewitz, “Predictive collision avoidance for
the dynamic window approach,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 8620–8626.

[15] E. J. Molinos, Ángel Llamazares, and M. Ocaña, “Dynamic
window based approaches for avoiding obstacles in moving,”
Robotics and Autonomous Systems, vol. 118, pp. 112–130, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0921889018309746

[16] L. Chang, L. Shan, C. Jiang, and Y. Dai, “Reinforcement based
mobile robot path planning with improved dynamic window
approach in unknown environment,” Autonomous Robots, vol. 45,
no. 1, pp. 51–76, 2021. [Online]. Available: https://doi.org/10.1007/
s10514-020-09947-4

[17] Y. Kantaros, S. Kalluraya, Q. Jin, and G. J. Pappas, “Perception-
based temporal logic planning in uncertain semantic maps,” IEEE
Transactions on Robotics, vol. 38, no. 4, pp. 2536–2556, 2022.

[18] J. Crespo, J. Castillo, O. Mozos, and R. Barber, “Semantic information
for robot navigation: A survey,” Applied Sciences, vol. 10, p. 497,
2020. [Online]. Available: https://doi.org/10.3390/app10020497

[19] J. K. Johnson, “Visual Servoing for Mobile Ground Navigation,” in
88th IEEE Vehicular Technology Conference, VTC Fall 2018, Chicago,
IL, USA, August 27-30, 2018, 2018, pp. 1–5.

[20] J. Rodziewicz-Bielewicz and M. Korzeń, “Vision-based mobile robots
control along a given trajectory,” in Artificial Intelligence and Soft
Computing, L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz,
R. Tadeusiewicz, and J. M. Zurada, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 69–77.

[21] Z. Zhu, R. Wang, and X. Zhang, “Visible rrt*: Asymptotically optimal
random search tree for visual servo tasks with the fov constraint,” in
2023 42nd Chinese Control Conference (CCC), 2023, pp. 4633–4638.

[22] S. Hong, J. Lu, and D. P. Filev, “Dynamic Diffusion Maps-based Path
Planning for Real-time Collision Avoidance of Mobile Robots,” in
IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 2224–2229.

[23] H. Ali, S. Murad, and Z. Shah, “Spot the Fake Lungs: Generating
Synthetic Medical Images Using Neural Diffusion Models,” in Arti-
ficial Intelligence and Cognitive Science, L. Longo and R. O’Reilly,
Eds. Cham: Springer Nature Switzerland, 2023, pp. 32–39.

[24] N. Sharmin and R. Brad, “Optimal filter estimation for lucas-kanade
optical flow,” Sensors (Basel), 2012.

https://www.sciencedirect.com/science/article/pii/S0921889018307310
https://www.sciencedirect.com/science/article/pii/S0921889018307310
https://www.sciencedirect.com/science/article/pii/S0921889018309746
https://www.sciencedirect.com/science/article/pii/S0921889018309746
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.3390/app10020497

	INTRODUCTION
	RELATED WORK
	Local Path Planning and Visual Servoing
	Diffusion for Path Planning

	Preliminaries
	METHOD
	Global Planner
	Local Planner
	Waypoint Tracking
	Intermediate Waypoint Selection
	ROI Processing and Goal Selection
	Local Path Generation

	Path Following

	RESULTS
	Performance Evaluation
	Real-World Evaluation

	CONCLUSION
	References

