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Abstract— In this paper, we introduce a method to tackle the
problem of robot local path planning among pushable objects –
an open problem in robotics. In particular, we simultaneously
train multiple agents in a physics-based simulation environ-
ment, utilizing an Advantage Actor-Critic algorithm coupled
with a deep neural network. The developed online policy enables
these agents to push obstacles in ways that are not limited
to axial alignments, adapt to unforeseen changes in obstacle
dynamics instantaneously, and effectively tackle local path
planning in confined areas. We tested the method in various
simulated environments to prove the adaptation effectiveness to
various unseen scenarios in unfamiliar settings. Moreover, we
have successfully applied this policy on an actual quadruped
robot, confirming its capability to handle the unpredictability
and noise associated with real-world sensors and the inherent
uncertainties in unexplored object-pushing tasks.

I. INTRODUCTION

Mobile robots have gained great capabilities in the past
decade, such that they are now able to autonomously navigate
efficiently and safely even in clutter environments, by avoid-
ing static or dynamically moving obstacles [1]. Although,
the navigation problem where objects can be moved around
to free space –also known as Navigation Among Movable
Obstacle (NAMO)– is still an open problem. This concept
mirrors the human instinct to shift, for instance, furniture or
other objects blocking their way in densely furnished areas,
suggesting that robots could similarly optimize their routes
by strategically moving obstacles to clear a path towards
their destination. The applications in robotics are highly
relevant in several scenarios, including tasks with regular
maintenance in factories where unused containers and boxes
might block access points, domestic service robots navigat-
ing through furniture-cluttered homes, or robots conducting
inspections in subterranean environments obstructed by rocks
and debris. The capacity for effective obstacle manipulation
can greatly enhance autonomous navigation efficiency in
these settings.

The problem when movable objects need to be moved
around, even in simplified versions, is proved to be NP-
hard [2]. To solve global path planning among movable ob-
stacles, previous studies have explored iterative and recursive
algorithms [3], but often relying on certain simplifications,
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Fig. 1. Visual sensors capture the surroundings, and this data is then
processed into a specific state representation. This processed information
is inputted into a previously trained policy network. The network then
generates a strategic action directive for the robot, enabling it to navigate
and address the task of local path planning.

such as having prior knowledge about the environment,
planning tasks offline which is exponential to the number
of local obstacles [4], and limiting movements to axial-
aligned object pushes. On the other hand, local path planning
in a movable object setting has been minimally studied in
the past, with only a few considering sensor inaccuracies
when dealing with unexpected object dynamics [5], [6],
[7], usually based on traditional optimization methods, that
require intensive fine tuning and handcrafted design choices.

In this paper, we propose a novel approach to overcome the
aforementioned limitations, by employing deep Reinforce-
ment Learning (DRL) as depicted in Fig. 1. In particular,
we utilize a neural network for policy-based RL, to allow an
online agent complete local path plans without the constraint
of previous work for axis-aligned pushing, as well as al-
lowing uncertainties in sensor inputs and obstacle dynamics.
Our solution targets the keyhole problem [8], where a mobile
robot aims to traverse from one disjointed area to another by
pushing obstacles through narrow passages. We acknowledge
that other forms of object manipulation exist, such as pulling
or lifting, but additional robotic mechanisms such as arms are
needed, while just pushing remains NP-Complete. The goal
of the trained policy is local path planning that can be inte-
grated into other global navigation methods, such as A* [9].
Our approach is based on Advantage Actor-Critic [10],
leveraging the advanced capabilities of the NVIDIA Isaac
Gym physics engine [11] for simulating and training parallel
agents. We showcase outcomes for policies that are adept
at navigating through both familiar environments with new



Fig. 2. Our approach utilizes a deep neural network for policy-making. The state representation, st, includes both a vector and a grid. The vector, of
length 242, contains data on the agent’s current position, the corners of the object, the previous action taken, and the destination. The grid is a 48× 48
matrix, with each cell semantically annotated. Initially, the vector is processed through a linear unit, while the grid undergoes processing through two
convolutional units followed by a linear unit. The results from both processes are then merged and further processed through two additional linear units.
Subsequently, the network splits, employing two distinct sets of weights to generate both the estimated value and the proposed action.

movable obstacle placements, and entirely unknown environ-
ments with unseen movable obstacles. Moreover, we validate
our findings through practical experiments using a Unitree
Go1 quadruped robot, illustrating the policy’s effectiveness
in dealing with sensor inaccuracies and varying dynamics of
real-world obstacles.

In Sec. II, we discuss the literature on the NAMO prob-
lem, while in Sec. III we state the problem formulation in
the reinforcement setting, and how we implement training
in simulation. In Sec. IV we present our results both in
simulation and with real robot experiments. Lastly, Sec. V
concludes the paper and points to future directions for
solving NAMO with RL.

II. RELATED WORK

Path planning, both globally or locally, for obstacle avoid-
ance has been heavily studied in the past [12], and while
several interesting techniques use reinforcement learning [13]
we will not extend further in this related work. In contrary,
we will briefly review methods that deal with movable
obstacles, especially in the local path planning case.

Global navigation among movable objects/obstacles is a
topic that has been studied from the 1980’s [14] – an NP-
Complete problem even in the simple case of moving square
blocks in the plane [2]. A series of papers by Stilman et al.,
such as [8], [3], considered the problem as a graph planning
one in which disjointed free spaces (nodes in the graph) can
be connected when obstacles can be moved around. In other
works, similar setups were solved using RRTs and adaptive
heuristics [15] or axis-aligned obstacle movements [16],
[17]. The problem has been studied in more generic ways,
e.g., axis-aligned object manipulations via non-linear opti-
mization [4]. In such solutions, all computation is offline
(exponential to the number of objects) with prior knowledge
of the environment, including the movability of the objects
themselves. In contrary, there are also methods that could
online re-plan pushing actions in unknown environments [18]
or by pick-and-place on humanoids [5] using traditional

path planning techniques. Hierarchical RL was used first by
Levihn et al. [19] to deal with uncertain sensory information,
while later in non-axial manipulation of obstacles developed
in [6], a physics-based RL framework in unexpected obstacle
behaviors such as rotation was handled. Compared to those,
our method runs in constant time complexity and therefore
completes similar tasks five times faster, while we are able to
solve harder non-linear problems too. More recently, tactile
sensing is used for negotiation of unknown objects [7], while
curriculum learning is used in [20] to solve the global navi-
gation among movable obstacles problem. Further extensions
to NAMO, such as socially aware obstacle placement, have
also been examined in [21], [22], [23], using classic search-
based approaches.

In this paper, we utilize deep RL to deal with the local path
planning problem in narrow spaces. In a similar setup, Xia et
al. [24] used deep RL to deal with collisions with pushable
objects, rather than actual planning interactions with those.
Given all the aforementioned methods, the real novelty of
our approach is:

• We propose a deep RL policy that can solve local
path planning among pushable objects, with non-axial-
aligned pushing and constant computational complexity.

• We demonstrate that the proposed policy is able to work
for unseen object positions in known environments,
and generalizes to unseen object positions in unknown
environments.

• We show that reliable sim-to-real transfer is possible to
handle sensor noises and uncertain object dynamics.

III. METHODS

In a standard episodic Reinforcement Learning (RL) sce-
nario, an agent interacts with its environment in discrete
steps. At each step, the agent observes a state st and chooses
an action at based on a policy distribution π(at|st;θ), with
θ representing the parameters of a function approximator.
Following the action, the agent is presented with a new



state st+1 and a scalar reward rt. The goal in a policy-
based framework is to adjust θ to enhance the expected total
reward Rt =

∑∞
k=0 γ

krt+k, where γ ∈ (0, 1] serves as the
discount factor. Within Advantage Actor-Critic techniques,
the approach involves calculating both a policy π(at|st;θ)
that dictates action selection and a value function V (st;w)
that predicts the expected reward Eπ[Rt|st = s] if the agent
follows policy π from state st. The value function, or critic,
is adjusted through the parameters w, while the policy, or
actor, is modified using the parameters θ.

We developed a deep neural network to serve as a function
approximator, modifying its parameters through the process
of stochastic gradient descent. The update rules for the
parameters are as follows:

θ ← θ + α∇θ log π(at|st;θ)A(st, at;w) (1)

w ← w + αw∇wV (st;w)A(st, at;w) (2)

Here, α and αw denote the learning rates for the policy and
value function updates, respectively. The term A(st, at;w)
calculates the n-step advantage for a given state-action
pair (st, at), incorporating a lookahead of k steps, where
A(st, at;w) =

∑k−1
i=0 γirt+i + γkV (st+k;w)− V (st;w).

The architecture combines the actor and critic parameters
θ and w through a shared weights strategy as depicted in
Fig. 2, enhancing the stability of the learning process. Fur-
thermore, we integrate an entropy term ∇θH(π(st;θ)) into
the update equations Eqs. (1) and (2), following the guidance
of prior research to regularize the learning phase. Addition-
ally, we implement a clipped surrogate objective [25]:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
where ϵ represents a hyper-parameter that needs adjustment.
Such objective further refines the stability and efficiency of
policy updates during training.

A. Problem Formulation

We address the problem of local path planning, aiming
to link two disjointed, neighboring free spaces divided by
obstacles that can be pushed around. An agent is introduced
to operate within this environment across multiple timesteps,
taking actions in a continuous space defined by forward
velocity vx and angular velocity θ̇z. At every timestep, the
agent earns a reward rt from the environment, with the goal
being to optimize the total return

∑∞
k=0 γ

krt+k.
The setting is a confined area featuring a narrow path

blocked by various pushable objects; the agent/robot needs
to move from one place to another by locally pushing objects
around. The episode concludes when the agent either reaches
the objective or surpasses the maximum duration allowed
for an episode. We presuppose the availability of certain
preliminary inputs for defining the agent’s state: a seman-
tically annotated, coarse occupancy grid accessible through
LiDAR or RGB-D sensors coupled with semantic segmen-
tation techniques [26]; bounding boxes around obstacles
detected via object recognition software [27]; and data on
the agent’s instantaneous condition derived from the robot’s

TABLE I
REWARDS AT EACH TIMESTEP

reward description weight

goal 1 if reach goal, 0 otherwise 10
progress [-1, 1] ∝ velocity towards goal 1
dist [0, 1] ∝ distance to goal 0.1
wall collision -1 if collision with wall 0.2
object collision -1 if collision with object 0.1
vel effort [−1, 0] ∝ vtarget target velocity 0.05
rot effort [−1, 0] ∝ θ̇target 0.1
vel offset [−1, 0] ∝ |vactual − vtarget| 0.2
rot offset [−1, 0] ∝ |θ̇actual − θ̇target| 0.1
time -1 1

built-in sensors, acknowledging some degree of inaccuracy in
all sensory data. Utilizing these initial inputs, we formulate
the state of the agent to encompass the target location G, the
coordinates of pushable obstacles BVt, details on the robot’s
present status (position, velocity, rotation, angular velocity)
RPt, the most recent action at, and a semantically annotated
occupancy map. To impart temporal context to the agent, we
incorporate a sequence of prior states concerning RPt, BVt,
and at, echoing the approach used in previous research [28].
Our choice to integrate the last 5 frames balances effectively
between operational efficiency and computational demands.
The comprehensive state consists of the occupancy map
and a vector detailing G, RPt−4:t, BVt−4:t, and at−4:t, as
illustrated in Fig. 2. For the policy to remain functional
and adaptable, we employ a straightforward control scheme
based on a unicycle model, which is characterized by two
movement parameters: vx (linear velocity) and θ̇z (angular
velocity). This policy is designed to be versatile, applicable
across various mobile robotic platforms, as demonstrated in
the experimental section.

The goal for the agent is to optimize the total cumulative
reward. Rewards at each step are outlined in Table I. A
significant reward is allocated for successfully completing
the objective, with no reward given for incomplete tasks.
Incremental positive rewards are awarded each timestep for
actions that advance the agent toward the target (progress),
or for maintaining proximity to the goal (dist). Conversely,
minimal negative rewards are assigned in relation to the
effort required for movement (vel effort, rot effort), collision
with walls (wall collision), and interactions with objects
while pushing (object collision). Additionally, the agent is
penalized for significant deviations between intended and
executed actions, often caused by object collisions or sudden
changes in action (vel offset, rot offset).

B. Implementation

Our agent’s training is conducted in a simulated envi-
ronment using NVIDIA Isaac Gym [11], a platform that
supports the concurrent training of multiple agents on a sin-
gle GPU, promoting both stability and efficiency in policy-
based learning strategies [10]. We adopt the advantage actor-
critic method, utilizing a deep neural network that integrates
two distinct components of the state space, as depicted in
Fig. 2. This state space is comprised of both vector and grid
elements, each normalized within the range of [−1, 1]. The
vector portion undergoes processing in a linear block, which



Fig. 3. Fixed maps and random obstacle positions. Agents (gray) need to
push object (yellow) to reach the goal (green). The maps include corridors
(a,b), mid (c,d), side (e,f), and diagonal (g,h) doorways.

includes a single perceptron layer with 128 units, followed
by ReLU activation and a normalization layer. Meanwhile,
the grid data is processed through two convolutional blocks,
each equipped with convolutional filters, ReLU activation,
and batch normalization. Specifically, the first convolutional
block utilizes 16 filters sized 8× 8, and the second employs
32 filters of 4× 4. After flattening the output, it is directed
through a linear block containing 128 units. Following the
concatenation of the two processed streams, the combined
data is further processed through two linear blocks, one with
128 units and another with 64 units, leading to the final stage
where two separate linear layers generate the value estimate
V (st) and the proposed action [vx, θ̇z].

C. Scene Generation and Curriculum Training

In Fig. 3, we present eight distinct map layouts created
within Isaac Gym, each designed to encapsulate a broad
spectrum of local Navigation Among Movable Obstacles
path planning among pushable objects scenarios. These con-
figurations include tight corridors (maps a and b), entryways
with adjacent spaces (maps c and d), entrances flanked by
walls (maps e, f , and i), and diagonal doorways (maps g and
h). Agents are placed in specifically designed rooms, each
measuring approximately 6 × 6 square meters, a dimension
that accommodates mobile robots ranging from 0.5 to 1
meter in length, enabling their navigation through narrow
paths approximately 1 to 2 meters wide. The challenge is
heightened by obstacles placed close to these narrow paths,
complicating the robot’s ability to traverse them. Robots
and their target destinations are randomly positioned within
designated zones, with a small probability (5%) that robots
may spawn anywhere on the map, ensuring they have the
opportunity to explore every area to some extent.

We opt for pushable obstacles (represented as boxes)
approximately 60cm3 in size, limiting the number to a
maximum of 5 per room. This quantity was selected as it
populates the room with sufficient diversity without over-
crowding it, which would complicate the generation of object
positions. Random generation of obstacle locations would
simplify most scenarios, minimizing the need for the agent
to interact with obstacles. To counteract this, obstacles are
placed with a skewed probability towards more challenging
positions. Specifically, for each obstacle i, there’s a λpi

Fig. 4. The progression of rewards through policy update iterations is
depicted with the single map scenario in purple and the multi-map scenario
in green. The phenomenon of curriculum learning is evident through the
steep declines in the purple line, indicating the increasing difficulty of tasks;
this effect is mitigated in the multi-map scenario, where the curve is more
gradual since not all tasks advance through the curriculum at the same time.
While the single-map approach tends toward a steady state of balance, the
multi-map approach demonstrates a need for early termination due to its
varied progression.

Fig. 5. Qualitative simulated results on single map setting: the agent adapts
to different obstacle positions and finds efficient paths.

chance it will appear at a random spot within the room, with
an arbitrary orientation. With a λ(1 − pi) likelihood, it is
positioned in strategically difficult locations (e.g., blocking a
narrow path or situated close to such a path) with slight
random adjustments. An obstacle is omitted, represented
as zeros in the input data, with a 1 − λ probability. The
probability pi for each object ranges from 0.2 to 0.6, and λ
is incrementally increased from 0.2 in set steps. Through the
random placement of pushable objects, we compel the agent
to discover solutions for varying obstacle configurations
during each attempt. This process encourages the agent to
develop an understanding of how different obstacles relate
to one another, including determining the sequence in which
to move the obstacles.

The parameter λ serves as a mechanism to modulate the
number of objects, thus adjusting the complexity of the
Navigation Among Movable Obstacles path planning among
pushable objects challenge. This methodology introduces a
curriculum training strategy, where the difficulty escalates as
the agent becomes proficient at simpler tasks. A completion
rate threshold (e.g., 90%) determines when the difficulty
level increases. Starting from λ = 0.2, the agent is trained
until it achieves a 90% completion rate, at which point λ
is incremented by 0.2. This cycle repeats until λ equals 1,
ensuring that 4 to 5 objects are consistently present at the
commencement of each scene. The impact of this curriculum



learning approach throughout the training is illustrated in
Fig. 4.

D. Domain Randomization

Intensive domain randomization is employed across both
state and action spaces, incorporating Gaussian white noise
to reflect the anticipated variability and noise in real-world
sensor readings and object movements. This approach is
designed to ensure that the developed policy can effectively
adapt to and manage the unpredictability inherent in real-
world scenarios. By integrating noise into the state space
inputs, we aim to mimic the sensor inaccuracies robots might
face, such as variations in the detection of obstacle and
robot positions over time. It’s important to note that noise is
added separately to the vector and grid states, mirroring the
often uncorrelated nature of real-world sensor noise sources.
Likewise, we introduce Gaussian noise to the model’s action
outputs to replicate unforeseen robot dynamics. The adoption
of domain randomization techniques in our training method-
ology reduces the discrepancy between simulation and real-
world applications, thereby enhancing the policy’s reliability
in the presence of noisy data and unpredictable dynamics.
This preparation ensures policy robustness, a claim we will
substantiate in the subsequent section.

IV. EXPERIMENTAL VALIDATION

A. Simulation

Initially, we evaluate the effectiveness of our trained policy
through both numerical and observational assessments in a
simulated environment. The training is conducted under two
distinct scenarios: a single room and multiple rooms. In the
single-room scenario, the agent’s training involves navigating
through randomly placed objects, as depicted in Fig. 5.
Conversely, the multiple-room scenario introduces the agent
to eight varied room configurations. Our findings indicate
that within the single-room setup, the policy successfully
adapts to novel obstacle arrangements within a familiar
setting, showcasing efficient strategies and a minimal rate
of failures. Meanwhile, in the context of multiple rooms, the
policy demonstrates adaptability to new obstacle placements
across unfamiliar settings, albeit with slightly less refined
behaviors.

For both experimental setups, we implement identical
training configurations. The methodology for scene creation
and the introduction of variability are outlined in Sec. III,
highlighting the random allocation of agent, target, and
pushable object locations, the adoption of a progressively
challenging curriculum, and the application of domain ran-
domization to both inputs and outputs. The optimization
process leverages the ADAM algorithm [29], enhanced with
l2 regularization to improve stability [30], and incorporates
gradient clipping to mitigate the risk of exploding gradients,
a common issue in scenarios involving off-policy learning,
approximate function representation, and value bootstrapping
(referred to as the deadly triad) [31]. An adaptive learning
rate strategy is employed, guided by a predefined KL diver-
gence threshold. The training protocol specifies a horizon of

Fig. 6. Observational findings from simulations in various map config-
urations reveal that: a) the agent strategically maneuvers around obstacles
in sequence, optimizing its path with only slight deviations; b) the agent
effectively adapts to unforeseen changes in dynamics.

TABLE II
POLICY PERFORMANCE ON SINGLE MAP WITH VARYING λ

λ objects completion rate time taken objects pushed

0 0 99.9 6.80 0
0.2 0.7 98.5 7.13 0.34
0.4 1.3 98.3 7.68 0.64
0.6 2.1 97.4 8.09 1.00
0.8 2.8 94.5 8.14 1.37
1 3.7 91.0 8.69 1.92

50 actions, with policy updates occurring every 20 physics
simulation steps (equivalent to 333 milliseconds). Episodes
are capped at a duration of 45 seconds, translating to 2700
physics simulation steps. The training process engages 4, 000
parallel environments, with each update drawing on a mini-
batch of 2, 000 samples. This regimen is executed on an
NVIDIA RTX 3080 GPU, spanning 20, 000 policy update
iterations.

In our initial experiment using a singular map layout, the
policy undergoes training within a consistent map (Fig. 5)
with varied starting points for the agent, destination, and
pushable obstacles. The evaluation is conducted over 1, 000
unique scenarios within the identical map setup but featur-
ing previously unseen obstacle placements. This evaluation
process is replicated six times, each instance adjusting the λ
parameter to increment the obstacle count within the scene,
thus escalating the complexity of the challenges faced. Fig. 5
showcases exemplary outcomes from this experiment. Obser-
vations from the upper section indicate the agent’s capability
to maneuver obstacles in a non-linear manner along its
path. The lower segment illustrates the agent executing a
tighter maneuver near a doorway, opting to slightly displace
obstacles to facilitate passage, a strategy necessitated by
the potential blockage of the goal (indicated in green) if
the obstacles were pushed directly into the doorway. These
actions underscore the adaptability and strategic planning of
the agent, surpassing the limitations of axis-aligned obstacle
manipulation commonly seen in previous research.

The numerical outcomes of this study are detailed in
Table II, with each row indicating a progressive increase
in challenge level corresponding to higher λ values. It’s
important to highlight that the actual count of objects present



TABLE III
COMPARISON BETWEEN POLICY PERFORMANCE ON TRAINING MAPS

AND TEST MAP, WITH λ = 0.8

Experiment completion rate time taken (s) objects pushed

Training (8 maps) 79.8 10.99 1.12
Testing (unseen map) 54.3 13.05 1.51

in each scenario doesn’t linearly correlate with λ, due to the
stochastic nature of object placement and the occasional lack
of available space for additional objects. As the scenarios
grow more complex with an increased presence of objects,
we note a decline in the success rate, primarily when the
agent encounters situations where pathways or the goal
itself become obstructed, rendering progress impossible. In
the table’s final column, we document the average number
of objects displaced during successful task completions.
Interestingly, this figure typically represents only half of the
average total object count in the scene, suggesting the agent
prioritizes moving only those obstacles that directly impede
its route. Across the single map experiments, the agent
exhibits consistent and effective behavior, adeptly adapting to
new obstacle arrangements and achieving a solution in 91%
of instances, even under the most demanding conditions.

In our subsequent experiment, we assess the ability of a
singular policy, trained across multiple map configurations,
to adapt not only to novel obstacle placements but also to
entirely new environments. The training encompasses maps
labeled a through h, as depicted in Fig. 3, followed by
testing the policy in 1, 000 scenarios within an unfamiliar
map layout (the same layout utilized in the single map
experiment). Maintaining stable learning progress in this
multifaceted context proves to be challenging. Despite the
implementation of various regularization strategies, achiev-
ing consistent policy convergence is not always possible. As
illustrated in Fig 4, the policy’s performance fails to match
that observed in the single map scenario. Consequently,
we resort to early stopping, selecting the most effective
policy version identified during the training phase for further
application.

Within the context of training across various maps, the
agent develops adaptable strategies suitable for diverse sce-
narios, such as the methodical displacement of obstacles
and the ability to dynamically respond to unforeseen events
and inaccuracies in sensory input. An instance of this is
demonstrated in Fig. 6-a, where the agent executes non-
linear, ordered obstacle movement (preferring to move one
object before another). This figure underscores the agent’s
proficiency in fine-tuning its approach by making only minor
deviations from its intended path, a feat difficult to achieve
under the limitations of axis-aligned movement restrictions.
Fig 6-b showcases the agent’s capability to navigate out of
less favorable situations. Challenges in accurately identifying
the doorway due to the coarse resolution of input images
may lead the agent to mistakenly contact a wall adjacent
to a doorway, as depicted in frame 2. Nevertheless, the
agent effectively maneuvers out of such predicaments by
reversing and then proceeding forward again, as illustrated

in frames 3 and 4. Although this approach results in a
policy that may not be as refined as that developed under a
single map framework, it evidentially highlights the agent’s
resourcefulness in rectifying its course from disadvantageous
positions.

The numerical outcomes are detailed in Table III, assessing
the agent’s efficacy within familiar settings (the eight original
maps) against novel obstacle configurations and entirely new
environments. The agent manages an approximate success
rate of 80% across all eight maps in the most challenging
scenarios, while it secures a 54% success rate in a novel
map setting. Although the performance in the unfamiliar
environment is comparatively lower, it nonetheless evidences
a notable capability. Enhancing performance further could
likely be achieved through increased randomization in train-
ing data and leveraging prioritized experience replay to re-
engage with more complex path planning problems [32].

B. Failure Cases

In scenarios involving a single map, the predominant
cause of failure is typically the agent pushing an object
to a position from which the path becomes irreversibly
obstructed. Conversely, the multi-map approach exhibits a
higher incidence of failures, often characterized by the agent
making superfluous maneuvers or occasionally becoming
stuck in a corner, as depicted in Fig. 6. These issues are
likely the result of inadequate feature discernment by the
network, which is trained on data exhibiting high inter-
correlation, coupled with the limited detail available in the
input imagery. Enhancements in feature extraction could be
achieved by expanding the variety of training environments
and utilizing experience replay techniques to reduce data
correlation. Similarly, an increase in the resolution of the
input images could further mitigate these issues.

C. Robot Experiments

This section details our results using an actual quadruped
robot (Unitree Go1), outfitted with aluminum extensions to
aid in pushing obstacles. We utilize cardboard boxes as
pushable objects, each measuring approximately 50 × 50 ×
50cm3. Due to the interaction between the boxes and the
carpet, the robot is limited to pushing a single box at a
time. To monitor the positions of both the obstacles (edges)
and the robot (orientation), two overhead cameras equipped
with ArUco Markers are employed. This setup allows us to
generate a 2D grid that forms the basis of the state space.
While the specifics of obstacle recognition and mapping
are not covered within this document, we demonstrate the
robot’s capability to navigate through sensor discrepancies
and unpredictable obstacle movements. The decision to apply
a neural network trained in a singular map environment is
due to its demonstrated reliability and stability, underscoring
the feasibility of applying the developed policy in real-
world scenarios, characterized by variable robot dynamics
and sensor data.

Our evaluations indicate that the robot is adept at maneu-
vering through confined spaces that include pushable obsta-



Fig. 7. Left to right: [t=0] Green dot is the goal. The robot: [t=4] avoids collision with object 3; [t=8] moves box 2 to create small opening; [t=10] stops
pushing object 2 and rotates towards box 1; [t=12] pushes object 1 out of the door. [t=23] Goal reached. The robot performs non-axis-aligned pushing.

cles, as illustrated in Fig. 7. The objective for the robot is
to locate a designated green point, effectively addressing the
Navigation Among Movable Obstacles (local path planning
challenge by circumventing collision with box 3 (by time
t = 4), strategically rotating and slightly moving box 2 to
make way (by time t = 10), and displacing box 1 from
the entrance until the target is reached (by time t = 23). It
was commonly noted that the robot employs pushing actions
along curved paths, utilizing minimal adjustments to alter
an obstacle’s orientation, frequently resulting in the most
efficient method for clearing narrow passages.

V. CONCLUSIONS

In our study, we introduced a deep reinforcement learning
strategy enabling a robot to execute non-linear obstacle
manipulation to address local path planning among pushable
objects, maintaining constant computational complexity. This
approach was validated both in simulated environments and
through practical implementation on a physical robot, ac-
counting for sensor inaccuracies. Looking ahead, our goals
include refining the learning process for agents operating
across diverse map layouts. Furthermore, we plan to explore
strategies enabling agents to navigate around obstacles of
uncertain movability and novel geometries by integrating
these variables into their training regimen.
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