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Abstract— In this work, we present DiPPeR, a novel and
fast 2D path planning framework for quadrupedal locomotion,
leveraging diffusion-driven techniques. Our contributions in-
clude a scalable dataset generator for map images and corre-
sponding trajectories, an image-conditioned diffusion planner
for mobile robots, and a training/inference pipeline employing
CNNs. We validate our approach in several mazes, as well
as in real-world deployment scenarios on Boston Dynamic’s
Spot and Unitree’s Go1 robots. DiPPeR performs on average 23

times faster for trajectory generation against both search based
and data driven path planning algorithms with an average
of 87% consistency in producing feasible paths of various
length in maps of variable size, and obstacle structure. Website:
https://rpl-cs-ucl.github.io/DiPPeR/

I. INTRODUCTION

Mobile robots, and especially legged ones, have the capac-

ity to evolve into multi-purpose machines, useful in many ap-

plication scenarios, such as production sites, household ser-

vices, remote inspection, and disaster search-and-rescue [1].

Path planning is crucial in enabling legged robots to navigate

autonomously and effectively complete the attributed tasks in

various complex environments. Several studies, e.g., [2], [3],

were dedicated towards the development of safe and efficient

path planning algorithms, many of which utilize traditional

methods such as Rapidly-exploring Random Trees (RRT)

and A∗-based methods [4], [5]. However, such approaches

often struggle to effectively handle the complexities and

uncertainties associated with real-time sensor inputs [6].

Efficient and reliable path planning for quadrupeds is an

ongoing challenge, with data driven approaches, such as

Neural A* [7] and ViT-A* [8], showing promising efforts

into overcoming the shortcomings of traditional approaches.

Learning from demonstration methods using image condi-

tioned Diffusion, have also shown promising results in path

planning, applied mainly to manipulators [9], [10], [11],

however, with minimal literature on their application on

quadrupeds. Diffusion policies iteratively infer the action-

score gradient, conditioned on visual observations. This

allows for expression of multi-modal action distributions

and scalability to higher-dimensional output space (allowing
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Fig. 1: Illustration of DiPPeR global path generation process.

the generation of sequence of future actions), and training

stability while maintaining distributional expressivity [9].

In this paper, we leverage the progress made in diffusion

driven path planning, and develop an 2D path planning

framework for quadrupedal locomotion. We develop a train-

ing and inference pipeline using a Convolutional Neural

Network (CNN) based architecture. The main contributions

of our method is the introduction of:

1) a scalable dataset comprising of randomly generated

mazes and corresponding trajectories,

2) an image-conditioned diffusion planner for mobile

robots,

3) trajectory generation significantly faster than both

search based and data driven path planners and

4) a real-world deployment stack with a platform-

invariant framework validation.

The remaining of the paper is structured as follows. In

Sec. II, we briefly introduce literature in path planning

relevant to our proposed method. In Sec. III, we provide the

necessary background knowledge. In Sec. IV, we define our

proposed method, with our experimental results presented in

Sec. V. Finally, in Sec. VI, we summarize the results and

we conclude with some future work.

https://rpl-cs-ucl.github.io/DiPPeR/


Fig. 2: DiPPeR - Image Conditioned Diffusion Training Pipeline: A Map Image Observations sample O is fed to the ResNet-

18 Visual Encoder and converted to latent embeddings o. The x and y of the start and goal positions are also added as part

of O. Noise ϵk sampled from the prior Gaussian Distribution is added to the trajectory instance At. The noisy sample is

passed as an input to the diffusion network ϵθ and is conditioned by O. The network ϵθ takes the form of a CNN and it

outputs the denoised action A0.

II. RELATED WORK

Path planning algorithms, have a long history in robotics

and are primarily split between classical and data-driven.

A. Classical Path Planning

Classical approaches in path planning rely on search-based

and sampling-based methods. Search-based path planning

provides mathematical guarantees of converging to a solu-

tion if it exists. A∗ and its variations, offer simplicity in

implementation and effectiveness to find valid paths. For

instance, in very recent works [12], the authors introduced an

extension of A∗ to drive a mobile platform to sanitize rooms.

In [13], an A∗ algorithm was used to find the collision-free

path for a legged robot to achieve autonomous navigation,

while in [14], [15], similar path planners were developed for

wheeled-legged path planning. For legged robots, the prob-

lem is connected to footstep planning too [16], [17], [18],

where a sequence of footsteps are searched for navigation.

Traditional methods heavily rely on fixed heuristic functions,

such as the Euclidean distance, which lacks adaptability

to varying robot configurations and environments and are

usually computational heavy. In our work, such heuristics are

not required as the path is learned through demonstration of

multiple optimal trajectories.

Sampling-based planners efficiently create paths in high-

dimensional spaces, by sampling points in the state space.

Relevant literature in the field of quadrupedal robots in-

clude [2], where an extension of an RRT-based algorithm

is used for controlling a quadruped robot during the DARPA

Robotics Challenge in 2015. More recently in [3], a novel

sampling-based planner was introduce to shorten the com-

putational time for finding a new path for quadrupedal

robots. While these approaches demonstrate satisfactory per-

formance and probabilistic convergence, their limitations lie

in the increasing planning time as the complexity of the

environment increases, due to the iterative nature of the

algorithms.

B. Data-Driven Path Planning

State-of-the-art research in the field has shifted towards

incorporating machine learning techniques, which directly

learn the behavior of path finding. These methods employ

approaches such as expert demonstration [19] or imitation

learning [6] to learn how to plan paths. Recent works

directly address the issue of lack of semantically labeled

maps in classical search-based methods by using data-driven

approaches directly on raw image [20], [6], [21]. Specifi-

cally, Yonetani et al. [7] introduced Neural A∗ (N-A∗) –

a differentiable variant of the canonical A∗, coupled with

a neural network trained end-to-end. The method works

by encoding natural image inputs into guidance maps and

searching for path-planning solutions on them, resulting

in significant performance improvements over previous ap-

proaches in terms of efficiency. In an extension of N-A∗, Liu

et al. [8] introduced ViT-A∗, that uses vision transformers

for legged robot path planning which further improved the

performance. However, as these method still relies on the

A∗ to generate the final path, these methods would again

results in increasing planning time as the complexity of

the environment increases. Our proposed method, utilizes

diffusion process to parallelize the generation of the entirety

of the trajectory, overcoming this limitation.

C. Diffusion for Path Planning

Diffusion methods have gain popularity in the domain of

path planing with many works presenting promising results.

Hong et al. [22] developed diffusion maps applied to find a

local path for reaching a goal and avoiding collisions with

dynamic obstacles simultaneously, by computing transition

probabilities between grid points. Janner et al. [11] and Chi et

al. [9] developed impressive path planners, applied to robotic

manipulators, by providing demonstration data and learning

the trajectories through diffusion. We aim to leverage the

promising results and develop a diffusion planing pipeline

applied to quadrupedal locomotion.
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Fig. 3: Denoising diffusion steps (k = 1000, pathl = 200) to generate a path from noisy samples.

III. PRELIMINARIES

Path planning is essential for robot autonomous navigation

and involves calculating a trajectory for a robot to follow

in a map, between a start and end point. The solution of

path planing refers to the generation of an optimal path, that

full-fills the properties of finding the collision free, shortest,

and smooth route between start and goal positions [23]. As

elaborated in Sec. II, there are plethora of approaches to

solve path planing. For relevance to our method we expand

on Probabilistic Diffusion-based path planing, leveraging the

learning capabilities of CNNs.

A. Diffusion

Image-guided diffusion models [24] have emerged as

a powerful generative model with impressive performance

when dealing with image datasets, among others. They pro-

vide the ability to transform a latent encoded representation

into a more meaningful description of the image data. A

popular variation is the Denoising Diffusion Probabilistic

Model (DDPM), a generative model defined through param-

eterized Markov chains trained using variations inference. A

forward chain converts input data into noise and a reverse

chain converts the noisy data back to its original form. In

particular, the noisy data x1:N is generated by iteratively

adding Gaussian noise to the data x0 according to a variance

schedule β1:N [25]:

q(xi | xi−1) = N (xi;
√

1− βixi−1, βi
I) (1)

Then, the denoising occurs by learning transition kernels

parameterized using deep neural networks, for reversing the

noisy data xN back to the input x0 [25], [26]. The learned

denoising kernel pθ(x
i−1 | xi) is parameterized by a prior

Gaussian distribution starting at p(xN ) = N (xN ;0, I) and

is defined by:

pθ(x
i−1 | xi) = N

(

xi−1;µθ(x
i, i),Σθ(x

i, i)
)

(2)

where, θ represents the model parameters, µθ(x
i, i) the mean

and Σθ(x
i, i) the variance, parameterized by the deep neural

network. A popular deep neural network choice for image

conditioned diffusion are CNNs due to their benefits in

dealing with image datasets.

IV. METHOD

Our method is inspired by the baseline papers [9], [11]. We

adapt the image conditioned diffusion pipeline [9] to solve

the problem of mobile robot path planing, while also con-

ditioning for the starting and goal position of the trajectory

via inpainting based on [11]. Initially the training dataset

is generated, comprising of the 100x100 sized random and

solvable maps and a number of trajectories for each map

(Sec. IV-A). This is tenfold larger and more complicated

dataset than the one provided in the baseline paper [11]. The

dataset is fed into the training pipeline (Sec. IV-B), where

the optimal trajectories are learned through demonstration

by preserving local consistencies. The inference pipeline

(Sec. V-A) allows the generation of the optimal trajectory

given start and goal positions and the relevant map.

A. Data generation

Creating the training dataset includes generating random

map images and feasible 2D trajectories. Examples of the

randomly generated maps and trajectories are depicted in

Fig. 4.

1) Map generation: Map generation is done through

Kruskal’s Minimum Spanning Tree (MST) Algorithm [27],

with the edges representing potential wall locations and the

nodes representing cells. The algorithm works by initially

considering all edges of a randomly weighted graph and

sorting them by their weights. Then, it iteratively adds edges

to the MST, starting with the smallest weight, while ensuring

that the graph remains acyclic. This process continues until

all vertices are in the MST or the desired number of edges

is reached. Kruskal’s algorithm employs disjoint-set data

structures to efficiently detect and avoid creating cycles

during edge selection, resulting in a tree that spans all

vertices with the minimum possible total edge weight.

(a) Maps (b) Trajectories

Fig. 4: Generated samples from the dataset: 4a) examples

of 100 × 100 random solvable maps and 4b) examples of

trajectories, generated through A∗.
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Fig. 5: Validating DiPPeR’s performance and generalization. A random point is selected for the start and goal position on

the provided map. Maps a) and b) are part of the validation dataset to validate the performance of the network in connecting

the starting and end points while also avoiding the obstacles. Maps c),d) and e) are used to test the ability of the network

to generalize to different out-of-distribution environments of varying scale, color and obstacle structure.

2) Path generation: To provide trajectories in the training

framework, the generate paths need to be feasible - avoid

all obstacles. To generate feasible paths we use the A∗

path finding algorithm that uses a combination of heuristic

estimates and cost information to efficiently find the shortest

path between the start and end nodes. We randomize the

position of the start and goal node to generate a variety of

trajectories per map.

B. Training Framework

We formulate DiPPeR as a vision-guided mobile robot

path planner generated through DDPMs, as presented in

Sec. III. Our observation space O comprises of the 100×100
pixel images, representing the randomly generated maps. Our

action space At comprises of 2D trajectories for each map.

The subscript t refers to a sequence of timesteps, with t = T

representing the training horizon. We empirically conclude

that a dataset of 10, 000 maps with 100 trajectories each, is

sufficiently large to achieve generalization and adaptability

to unseen maps. Fig. 2 provides a graphical representation

of the proposed training framework.

DDPM Training: DDPM in our method, is used to

approximate the conditional distribution p(At | O) of the

action vector At, given the map image observation O. This

formulation speeds up the diffusion process and improves the

generated actions by predicting an action conditioned to an

observation, which translates to predicting trajectories given

the specific map image.

DDPM takes as input Ak
t with added noise ϵk, sampled

from the prior Gaussian distribution and performs k denois-

ing iterations (Ak−1

t , Ak−2

t , ..., A0

t ) through gradient descent,

following Eq. 3. The output is the noise free representation

of the input vector A0

t :

Ak−1

t = α(Ak

t − γϵθ(O,Ak

t , k) +N (0, σ2I)), (3)

where ϵθ represents the noise prediction network. The vari-

ables α, γ, σ and ϵk, when expressed as functions of k

compose the noise schedule that drives the learning process,

in this case, we’ve used the Square Cosine Schedule [28]

in line with [9]. The hyperparameters α, γ, σ determine

the scheduling learning rate which controls the extent to

which the diffusion policy captures high and low-frequency

characteristics of action signals.

Training ϵθ, involves predicting the noise added to a

random sample A0

t , through Eq. 3. For each A0

t a denoising

iteration k is selected with an added corresponding noise

value ϵk and variance. The mean squared error between the

ϵk and the predicted noise value from ϵθ is then calculated

based on Eq. 4, with the aim to be minimized along the

gradient descent.

L = MSE(ϵk, ϵθ(O,A0

t + ϵk, k)) (4)

By using inpainting-based goal state conditioning [11]

and image conditioned diffusion [9], DiPPeR actions can

be directly implemented to the real robot to find feasible

trajectories connecting the start and goal positions given

the map of the environment. We observe that varying the

horizon length during training has a significant impact in the

performance of the model. The generated trajectories in our

dataset have variable length from 10 to 400, according to

the A* generated path. The horizon length should be long

enough to capture the whole range of the dataset, hence we

set it equal to 180 which is the estimated average trajectory

length.

An important design choice is selecting the architecture

of ϵθ. We chose a CNN due to it being relative easy to tune

compared to Transformers.
DiPPeR: We develop two variations of DiPPeRcnn. The

first version has observation space O as defined in Sec IV-

B. The second version adds two extra terms to O, the

trajectory start and end points, each expressed as a 2D vector

corresponding to the x and y pixel coordinates. Whilst these

extra start and goal conditions are not strictly necessary, as

the inpainting-based start and goal conditioning are also used

during inference, we have noticed that these extra conditions

helped with convergance speed during training. A 1D tem-

poral CNN is used with conditioning the actions generation

on the observations by p(At | O). The conditioning occurs

through Feature-wise Linear Modulation (FiLM) [29] as

proposed in [9].
Visual Encoder: A ResNet-18 visual encoder with spacial

softmax pooling is trained end-to-end to convert the obser-

vation image O to a latent embedding o while preserving

spatial information. The ResNet is trained alongside ϵθ.

V. RESULTS

A. Inference Pipeline

After training, the inference pipeline is used to validate

DiPPeRs’ performance. A start and goal position are ran-

domly sampled from a uniform distribution and are then
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Fig. 6: MRPB benchmark dataset maps used for comparing different planning methods with their respective sizes.

passed into ϵθ, alongside O. A pathl variable defines the

number of noisy samples used during the denoising diffusion

process. The value of pathl is defined as function of the

approximate length of the estimated trajectory, i.e. for start

and goal positions being further apart, the pathl will be

larger and vice-versa. A vector of noise sampled from the

prior Gaussian distribution with length equal to pathl and 2
dimensions (x and y pixel coordinates) is constructed with

the inpainting conditioning (i.e. the first and last column of

the noise vector being set to the start and goal positions,

respectively), is fed in the DiPPeR. The reverse chain of the

DDPM model is used to iteratively denoise the input vector.

The output is the final trajectory A0, connecting the start

and goal points, while aiming to follow a feasible path. The

progress of denoising during inference is depicted in Fig. 3.

B. Simulation Results

The evaluation of DiPPeR’s performance is completed

in two stages. Performance evaluation is performed by

sampling map images from the validation dataset and Out-

of-distribution evaluation which is performed by selecting

unseen map images of varying scale, color and obstacle

structure to test DiPPeR’s generalization capabilities. In both

cases a random start and goal position is selected along the

map and inference is performed following Sec. V-A. For all

experiments the number of diffusion iterations is empirically

chosen as k = 1000, to ensure both full convergence

and minimum inference time. In most cases convergence

is achieved with a smaller k however we decide to keep

it constant to preserve uniformity across experiments. The

path length pathl parameter has a significant impact on the

diffusion performance and needs to be varied according to

the desired trajectory length. Given the start and goal position

and the structure of the map, the number of feasible pixels

can be measured to create an approximate estimation of

pathl. Significantly larger pathl will results in trajectories

that loops locally and significantly smaller pathl result in

trajectories going through obstacles to connect the start and

end goal. The chosen evaluation metric is the success rate.

Success is achieved when the output trajectory A0 connects

the start and goal points while following a feasible path.

Some examples of achieved successful trajectories are shown

in Fig. 5. We evaluate DiPPeR in 10 images from the

validation set and 10 out-of-distribution maps. For each

map we generate 10 random start and goal positions and

repeat inference 3 times, to ensure consistency of the output.

The success rate is calculated by dividing the number of

successful experiments by the total number experiments and

is then converted to a percent value. The start and goal

position conditioned version of the DiPPeR outperformed the

non-conditioned one in all tests and we set it as our default

DiPPeR version.

The percentage success rate %sr for DiPPeR is presented

in Table I.

Dataset %sr

Validation 85
Out-of-Distribution 89

Average 87

TABLE I: Inference success rate for validation and out-of-

distribution datasets.

DiPPeR is on average 87% successful in providing feasible

paths. It performs best on out-of-distribution maps as they

contain instances of maps much simpler in terms obstacle

structure than the training dataset. To understand the failure

cases, we plot the success rate against the trajectory length

(Fig. 8). The success rate drops for both extremes of smaller

and larger trajectories and performs the best for trajectories

of length close to 180. This is expected as the choice of

horizon length is set equal to 180 during training, however

it presents a limitation that we aim to address in future work.

We consistent the same experiments in the real-word with

the results being consistent with the simulation ones.

To assess the performance of DiPPeR against SOTA path

planning frameworks, we evaluate its convergence speed

against a search-based planner A∗ and its data driven variants

N-A∗ [7] and ViT-A∗ [8]. We compare the algorithms by

using maps of increasing size and obstacle structure depicted

on Fig. 6. For each map 10 trajectories with random start and

end points are generated by the 4 algorithms. The time taken

for trajectory generation is measured for all experiments and

the 10 values for each map are averaged. The results are

summarized in Table II.

The maps for comparison are sampled from the MRPB

benchmark dataset [30].

All experiments were conducted using a NVIDIA RTX

3090 GPU. DiPPeR is on average 23 times faster against

the next best performing SOTAs algorithms, with feasible

trajectory generation taking only 0.4s regardless of maze size



Fig. 7: Real World Deployment: Spot (top) and Go1 (bottom) navigating around a maze environment using DiPPER in

combination with the developed navigation stack (Fig. 9).

Fig. 8: Plot of the average % success rate against the

trajectory length for maps sampled from the Validation and

the Out-of-Distribution Dataset

maps DiPPeR ViT-A∗ N-A∗ A∗

(a) 0.4 5.68 4.70 6.03
(b) 0.4 17.31 14.73 17.51
(c) 0.4 4.81 5.17 15.59
(d) 0.4 12.73 16.57 36.24

TABLE II: Average time in seconds taken for trajectory

generation by DiPPeR, ViT-A∗, N-A∗, A∗. Maps a)-d) are

presented in Fig. 6.

or trajectory length. This is due to the generative properties

of diffusion planner.

C. Real-World Deployment

A schematic representation of the real work deployment of

DiPPeR is depicted in Fig. 9. We validate the performance of

DiPPeR in the real world and its platform agnostic property

through deployment on Unitree Go11 and Boston Dynamics

Spot2.

In order to leverage the existing robot navigation frame-

works, DiPPeR is integrated with the 2D ROS navigation

Stack3, to act as a global path planner. Given the occupancy

map, DiPPeR generates a global path which is further refined

by the local planner – to avoid violation of the robots

kinodyanmics constraints and an external tracking system

– to mitigate for state estimation inaccuracies. The local

planner used is the Timed-Elastic-Band (TEB) [31], [32]

and the external tracker of choice is Phasespace tracking

1https://www.unitree.com/en/go1/
2https://www.bostondynamics.com/products/spot
3http://wiki.ros.org/navigation

Fig. 9: Schematic structure of the navigation stack for

DiPPeR real robot deployment.

cameras4. Phasespace cameras allow for 960 Hz robot real-

time localization. Examples of successful deployment of the

pipeline can be seen in Fig. 7.

VI. CONCLUSION

In this paper we present DiPPeR, an image guided dif-

fusion based 2D-path planner. The planner is successful in

generating feasible paths of variable length on average 80%
of the time, for maps of various size and obstacle structure.

DiPPeR outperformed in speed against both search based

and data driven planner by a factor of 23. We validate the

transfer of the planner in the real world and showcase its

platform agnostic capabilities by successfully testing it on

two different robots. We identified that DiPPeR tends to

performs less optimally for trajectories significantly longer

than the training horizon, as well as requiring an estimate of

the number of step for the final trajectory during inference.

We are aiming to address this in future work by also

experimenting with different network architectures, such as

transformers, that show promising results in the field of

diffusion.

4https://www.phasespace.com/
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