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Abstract— We present a novel robotic grasping system using
a caging-style gripper, that combines one-shot affordance local-
ization and zero-shot object identification. We demonstrate an
integrated system requiring minimal prior knowledge, focusing
on flexible few-shot object agnostic approaches. For grasping
a novel target object, we use as input the color and depth
of the scene, an image of an object affordance similar to the
target object, and an up to three-word text prompt describing
the target object. We demonstrate the system using real-world
grasping of objects from the YCB benchmark set, with four
distractor objects cluttering the scene. Overall, our pipeline
has a success rate of the affordance localization of 96%, object
identification of 62.5%, and grasping of 72%. Videos are on
the project website: https://sites.google.com/view/
rl-affcorrs-grasp.

I. INTRODUCTION

Autonomous object grasping is an important and heavily
studied problem in the robotics community. The devel-
opments in machine learning and artificial intelligent, in
general, allowed for highly efficient methods when grasping
objects for the purpose of pick-and-place [1], [2], [3]. The
problem still remains open, not only when dealing with
sensitive objects such as fruits, but also when the envi-
ronment semantics of multi-modal data [4], [5] play a role
during manipulation. In this work, we aim at dealing with
these latter open questions, especially aiming for minimal
prior knowledge in the presence of object and position
uncertainties.

In particular, we investigate object grasping through a
pipeline built around object flexibility and few-shot image
methods. We detect unseen objects via a text-based grasping
task description [6] and identify graspable areas on these
objects via one-shot affordance localization [7], [8]. The
desired object is extracted from a cluttered scene given only
a support image and a brief text description, for example
“chocolate pudding box”. The support image includes an ob-
ject similar to the target one, on which one-shot affordances
are generated and matched to similar objects and regions in
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Fig. 1: Object grasping, based on our introduced system,
using the manipulator consisting of: a Franka Emika Panda
arm, the modified UCL three-finger caging-style gripper, a
wrist force/torque sensor, and an RGB-D camera.

the novel target image scene. Those proposed regions are
then given to the zero-shot object detection model, which
uses the text prompt to estimate the best matching region.
Finally, using the depth data, the object is localized, and the
grasping process begins.

We grasp with a caging-inspired gripper [9], designed with
three flexible fingers and a movable palm. Caging refers
to surrounding and trapping objects, which is an approach
tolerant to uncertainties in both object geometry and position.
This synergizes with our localization pipeline and few-shot
ethos, in particular, by using only in-grasp force sensing data
and no camera, as grasping proceeds. We deploy a grasp
controller trained with reinforcement learning [10], which
uses sensor feedback to control grasping forces, feeling when
the grasp is stable and reacting to changes. We evaluate our
system using 10 objects from the YCB set [11], testing our
pipeline both as isolated elements and as an ensemble to
demonstrate effective grasping of unseen objects in clutter,
leveraging minimal prior knowledge.

Next, we review the literature, followed by a description of
the hardware (gripper and sensors) and software (affordance
localization, text-to-image task description, reinforcement
learning grasping, and integration developments). Finally, we
demonstrate our method in simulation and in the real-world,
by comparing grasps of various objects.

II. RELATED WORK

While numerous works have previously explored various
aspects of robotic grasping, from teleoperation [12] to au-
tonomous manipulation [13], our method addresses a critical
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Fig. 2: Left to right: the gripper from two viewpoints, the strain gauge finger sensors, and the attached RGB-D camera.

hardware challenge by combining finger compliance, tactile
force sensing, closed-loop gripper feedback, and simulated
training using reinforcement learning within a single gripper
design. This comprehensive integration sets our system apart
from previous hardware solutions, such as those discussed in
Newbury et al. [3].

In the context of machine learning, where deep reinforce-
ment learning has revolutionized grasping techniques [14],
our focus shifts towards safe grasping of delicate ob-
jects [15], [16]. Moreover, we embrace the challenge of
accomplishing semantic tasks described in natural language,
such as “grasp the red mug” [17], [18]. Our method uniquely
combines these language-based tasks with our advanced
gripper system. Furthermore, we recognize the growing
need to reduce reliance on annotated data for grasping
learning [19], [20]. Our approach directly addresses these
challenges, specifically tailored to the distinctive features of
our novel gripper and its multi-modal sensor capabilities.

In summary, our paper introduces a unique combination of
contributions by seamlessly integrating hardware innovation,
safe grasping, language-based tasks, and reduced annotation
requirements, all while achieving high success rates in affor-
dance localization, object identification, and grasping tasks.

III. HARDWARE DESCRIPTION

Our hardware system (visualized in Figs. 1 and 2) is
comprised of a 7DoF Franka Emika Panda robotic arm
and a caging gripper using in-grasp force sensing [9], [10],
which we enhanced further with an RGB-D sensor for the
localization pipeline. The gripper aims to grasp objects by
surrounding them with three flexible steel fingers. Each of
the fingers has a 90◦ bend at the tip so that they can
slip underneath objects. Each finger is equipped with strain
gauges, shown in Fig. 2, measuring bending and hence in-
grasp forces. The palm is movable and descends to constrain
objects, also equipped with force sensing via a penny load
cell. There are two main mechanisms in the grasp. Firstly, the
caging effect traps objects with the three hooked fingers and
palm. Secondly, friction is generated by squeezing the fingers
and palm around the object, which is moderated by the
flexible finger bending and monitored by the force sensing.
A Robotiq force/torque sensor is mounted on the robot wrist
above the gripper, which can measure out-of-grasp forces

such as the object weight or environment collisions.
The gripper has 3DoF. The three fingers are mechanically

coupled, and can be actuated in two ways: prismatically
moving in and out or rotating about the base to change their
angle. The grasping includes a fourth degree of freedom, as
the Panda robot arm moves vertically up and down depending
on the grasping controller. All three gripper actuations are
achieved by driving leadscrews with stepper motors, ensuring
that these motions are non-backdrivable. This improves the
caging, as now the object cannot backdrive any motors to
relax the geometric constraints.

IV. SOFTWARE DESCRIPTION

Our software system integrates three different parts. The
first one (Sec. IV-A) deals with the problem of one-shot
object affordances (i.e., meaningful areas on objects) local-
izing in the scene. The second one (Sec. IV-B) deals with
the problem of receiving a text-based task –in our case, a
language-based description of the object that needs to be
grasped– and localizing an object to be grasped in the scene.
The third one (Sec. IV-C) deals with the problem of enabling
reinforcement learning to grasp an object using multi-modal
sensory data feedback. Connecting the dots (Sec. IV-D) the
final integration details are explained. The full methodology
is visualized in Fig. 3.

A. One-Shot Object Affordance Localization

Given a novel unseen scene, we are interested in deter-
mining which objects can afford to be grasped (or further to
be manipulated). There are multiple ways in doing that, e.g.,
with supervised deep learning [17], [21]. More recently, the
research community is moving towards self-supervised [7]
or one-shot methods, such as our developed affordance
correspondence method, named AffCorrs [8] that we brief
in this section and use in the integrated system.

The inputs are: 1) a query RGB image Iquery of an object,
2) a binary region mask Mquery ∈ {0, 1} of some part of
the object which is graspable in our case (or manipulable
in general), and 3) the RGB image Itarget of the target
novel scene. Firstly, DINO-ViT features [22] of both images
(i.e., query and target) are computed. This allows kNN-like
search across semantically similar features as has been shown
in [23], [24]. Those features are further cyclically matched



Fig. 3: System overview. AffCorrs (green background) searches regions in the target scene, tha have similar semantic features
as the query image, and CLIP (gray background) further corrects it based on a text task description. The robot approaches
and grasps the localized object using the caging gripper trained with reinforcement learning.

Fig. 4: One-shot grasping affordance correspondence (in red)
for a hammer’s handle in the scene.

and a one-to-many region correspondence is computed for
regions in the target scene that likely share the similar fea-
tures as the query region. The corresponding output regions
are also represented as binary masks.

The results of one-shot affordance localization is visu-
alized in Fig. 4. This step is important in our work, as
given the type of object area we want to manipulate from
an example/query, we can find all areas in the scene that
have similar affordances. For instance, in Fig. 4, the query
image Iquery is a hammer, with the binary region mask
Mquery ∈ {0, 1} being its graspable handle. The target image
Itarget contains a novel hammer of different type and shape.
The output of the method is the handle of the novel hammer
in the firstly seen target scene. In Fig. 5, there are four output
examples we ran on novel YCB objects. Each row visualizes
one object sequence of: query RGB image Iquery, query

Fig. 5: Four examples showing the one-shot affordance
localization for YCB objects.

binary region mask Mquery, the extracted query affordances
Affquery, target novel RGB image of the YCB object Itarget,
target binary region mask Mtarget, and the final affordance
correspondence for the novel YCB object Aff target.

B. Zero-Shot Text to Image Task Description

Given the proposed affordance regions as a binary mask in
the novel target scene, using the one-shot method in Sec. IV-
A above, we treat the detected areas as blobs. Those blobs
represent areas that can be grasped. Since there might be
more than one graspable area on multiple objects in a scene,
we need a way to specify a target object for a grasping
task. Thus, an additional pre-trained vision-language model
is utilized to evaluate each detected blob, enabling our model
to downstream object-level robotic tasks. This concept is
known as zero-shot text-to-image object localization. There
are three stages, that can be also visualized in the lower right
sub-figure in Fig. 3:



Fig. 6: Zero-shot object detection. The input is two blobs,
and the query text is “green ball”. The red bounding box
in the right sub-figure, denotes the region with the highest
confidence score, i.e., the green ball in the novel scene.

1) Blob Extraction: The extraction process takes two
inputs that come from the one-shot affordance localization:
(i) the RGB image of the target scene Itarget and (ii) the
affordance binary masks Mtarget ∈ {0, 1}. We use the
Spaghetti Labeling method [25] to determine the connectivity
of blob-like regions in Mtarget. This is a graph and block-
based method, which is very efficient, especially when deal-
ing with connected regions in binary images. This method
divides an image into small blocks and for each block it
creates a graph with nodes (pixels) and edges (connection
between pixels) in order to compute and label their connected
regions. After all blocks are processed, a post-processing
step is performed to make sure the result between blocks
are consistent. In this way, all pixels that are of the same
binary label are grouped together as blobs. All blob regions
are extracted and used for the object localization.

2) Open-Vocabulary Object Detection with Cropped Re-
gions: Having the blobs extracted, we need to provide a
task to the system, i.e., in our case, which object should be
grasped. For this purpose, we use CLIP [6] to select a region
in the novel query image for grasping/manipulation. This is
a joint image-text model, trained using contrastive learning.
We selected CLIP due to its impressive performance on
image-text pairing with novel unseen categories.

We apply this capability to perform zero-shot object
detection based on the output AffCorrs affordances and the
generated blobs. In particular, given the set of affordances in
the novel scene (target image) and the text task, we compute
the feature embedding of the blobs and the text, based on
the CLIP pre-trained encoding. Then, the cosine similarity of
each of the blob-text embedding pair is calculated, and the
pair with the highest similarity score is the one that matches
our text-based task description. For example, in Fig. 6, our
text task input is given as “green ball”, and the blobs are
those of a gray pan and a green ball; the green ball is detected
in the novel scene. The method is also visualized in Fig. 3,
lower right part.

3) Object Localization: Last but not least, we localize
the object that needs to be grasped/manipulated from the
top, by computing the 3D centroid of the selected object
region, by combining the original target RGB image Itarget,

region binary mask, predicted by CLIP, and target scene
depth Dtarget.

C. Reinforcement Learning-based Grasping

The final stage in our pipeline is grasping. In particular,
having detected and localized the objects and the grasping
affordance area, the grasping strategy is required to be robust
to any accrued positioning errors. We deployed a pre-trained
reinforcement learning grasping policy, where a simulated
version of the gripper was used for training before direct
transfer to the real world. The grasping controller used a
deep Q-network to select discrete actions each step, either
one of the 3 gripper actuations or vertical motion to lift and
lower the gripper.

In keeping with the flexibility of the zero and one-shot
ethos of our approach, the grasping does not use vision,
but only the sensor data available from the three finger
sensors, palm sensor, and wrist F/T sensor. Since forces
are continually fed back into the grasping network, the
grasp can react to changes via feedback control, to improve
the robustness and help compensate for errors. When the
controller considers the object to be well grasped, it can lift
the object, with a grasp considered successful if the object is
lifted to a height of 30mm, not touching the table, and being
contacted by all the fingers and the palm.

The RL method [10] was trained on a variety of basic ob-
ject shapes under the presence of noise to aid generalization.
Many food and grocery items which can be approximated to
basic shapes [26], well suited to caging. For these objects,
caging tolerates uncertainty well, whether this be in object
geometry or position, which is why it was chosen to integrate
into our approach.

D. System Integration

The system integration is made using ROS. An overview
of the integration model is shown in Fig. 3. The three
software modules (i.e., affordances, object localization, RL
grasping) are integrated to localize an object, an area of the
object that can afford grasping, and finally move above the
object and start cage grasping it via RL.

V. EXPERIMENTAL VALIDATION

In order to prove that the integration works effectively,
we present the experimental validation of the system on a
Franka Emika Panda, a Robotiq wrist F/T sensor, and our
novel gripper with an attached Intel D405 RGB-D camera.

A. Experimental Protocol

To ensure the robustness of evaluation method, 10 objects
are randomly selected from the YCB food items (Fig. 7-left).
We trialed each object 5 times, giving 50 total trials for the
whole system. Then, we completed extra trials to determine
the performance of each component in isolation, 50 trials
each. Every trial contained 5 objects, 4 being distractors from
the set, which were randomly selected (with a spare) then
fixed across batches of 10 trials, one per object. In Fig. 7-
right, we show successful object localization during trials,
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Fig. 7: Left: the query images (top) and the used YCB objects (bottom); Right: visual results of object localization via
affordance extraction and text task description, for several YCB objects in novel scenes.

Iquery Object CLIPquery Object LocalizationItarget
Mtarget Afftarget

"red chips
can"

"orange"

Fig. 8: The grasping results for three YCB objects – pear, can, orange (left to right): the query image (can for the can,
and apple for the pear and orange), the text grasping task description, the novel target image, the extracted binary map, the
extracted affordances, and the localized object. Below each row, we visualize the sequence of grasping moves by our robot.

while in Fig. 8 we visualize three successful localization and
object grasps throughout the full system pipeline.

B. Results

The results for the whole system are shown in Table I.
The affordance detection was extremely reliable, achieving
96% success rate, while the CLIP object detection had a
62.5% success rate. When tested in isolation, the grasping

approach succeeded 72% of the times, while when all three
components ran in sequence, the overall success rate for
grasping unseen objects was 48%.

C. Discussion

The integrated system combined several complex compo-
nents, with an overall 48% grasping success rate. The three
individual components of the system had varied reliability,



TABLE I: Integrated system grasping results.

Component in isolation All
integratedAffordance

detection
Object
identifcation Grasping

Success rate / % 96 62.5 72 48

with the 62.5% success rate for the CLIP-based object lo-
calization being the key bottleneck. The affordance detection
achieved high 96% success, even despite the support images
showing only related objects. For example, for all of the fruit
objects the support image was an apple. However, AffCorrs
tended to pass several possible affordance regions to CLIP,
increasing the difficulty of identifying the correct object
from the text prompt. We performed little to no prompt
engineering, however, it is likely that reliability would be
improved with more targeted prompts. The grasping had a
72% success rate, grasping every object at least once in the
5 trials. The moderate and larger objects were well grasped,
with worst performance on the lemon and Strawberry Jello
box, two of the smallest objects.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, we presented an integrated system combin-
ing one-shot affordance localization, zero-shot object iden-
tification, and reinforcement learning grasping. The system
took as input an image of a related object to the target, as well
as up to three words of text describing the target object. The
entire system focused on few-shot methods and flexibility,
with grasping proceeding without a camera, instead caging
using in-grasp force sensing only. The overall system success
rate on 10 YCB objects was 48%, with good affordance
detection of 96% and grasping of 72%, but object detection
being the primary limiting factor with 62.5% success rate.
Future work will focus on improving the localization system
by reducing the number of affordance regions passed to the
object localization, and improving the grasping itself with
improved fingertip designs and gradient based reinforcement
learning methods.
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