
ViT-A*: Legged Robot Path Planning using Vision Transformer A*

Jianwei Liu∗, Shirui Lyu∗, Denis Hadjivelichkov, Valerio Modugno, and Dimitrios Kanoulas

Abstract— Legged robots, particularly quadrupeds, offer
promising navigation capabilities, especially in scenarios re-
quiring traversal over diverse terrains and obstacle avoidance.
This paper addresses the challenge of enabling legged robots
to navigate complex environments effectively through the in-
tegration of data-driven path-planning methods. We propose
an approach that utilizes differentiable planners, allowing the
learning of end-to-end global plans via a neural network for
commanding quadruped robots. The approach leverages 2D
maps and obstacle specifications as inputs to generate a global
path. To enhance the functionality of the developed neural
network-based path planner, we use Vision Transformers (ViT)
for map pre-processing, to enable the effective handling of
larger maps. Experimental evaluations on two real robotic
quadrupeds (Boston Dynamics Spot and Unitree Go1) demon-
strate the effectiveness and versatility of the proposed approach
in generating reliable path plans.

I. INTRODUCTION

Legged robots, and especially quadrupeds, have seen
tremendous progress over the past few years allowing them
to carry out a wide range of tasks, ranging from package
delivery [1], agricultural production [2], and search-rescue
missions [3]. Path planning plays a crucial role in enabling
legged robots to navigate autonomously and effectively in
various complex environments. Several studies, e.g., [4], [5],
were dedicated to the development of efficient path planning
algorithms for quadrupedal robots, aiming to ensure their
safe navigation while avoiding collisions with obstacles.
Many of these works have utilized traditional methods such
as Rapidly-exploring Random Trees (RRT) and A∗-based
methods. Despite all the great efforts, achieving efficient and
reliable path plans for mobile robots continues to present an
ongoing challenge when using such traditional approaches.
For example, established planning methods often struggle to
effectively handle the complexities and uncertainties associ-
ated with real-time sensor inputs [6].

In contrast, the emergence of planners that integrate data-
driven methods, fostered by the advancements in Deep
Learning (DL), offers a promising avenue for addressing
some of these challenges, e.g., empowering robots to learn
and adapt from real-world data [7], [8]. This ability to gather
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(a) Boston Dynamics Spot (b) Unitree Go1

Fig. 1: The two robots (left: Boston Dynamics Spot, right:
Unitree Go1) used for validating the proposed method.

knowledge from real-world experiences equips robots with
the capacity to make more informed decisions in diverse and
challenging situations.

In this paper, we present an approach that builds upon
recent advancements in differentiable planners [8], enabling
the learning of end-to-end mapping. Specifically, we focus on
generating global paths for quadrupedal robots, by feeding
2D maps with obstacles into a deep neural network for
A∗-based learning. Moreover, we enhance the functionality
of our neural network-based planner by using a map pre-
processing step with Visual Transformers (ViT) [9]. By
introducing such an encoding, our method can leverage the
strengths of transformers, particularly in capturing long-
range dependencies and learning complex relationships in
the input map images, while enabling the handling of larger
maps efficiently. In the remainder of this paper, we refer
to the proposed method as ViT-A∗ Path Planner. The con-
tributions of this work can be summarized as follows. We
introduce:

• a ViT-based Neural A∗ Path Planner (ViT-A∗) that
operates efficiently on maps of any dimension;

• a control stack to ensure the successful application
of the proposed method on real quadruped robots in
numerous application scenarios.

The subsequent sections are structured as follows. Sec. II
provides an overview of the relevant literature, discussing
previous works in the field, while Sec. III outlines the
proposed method in detail. Sec. IV presents the experimental
setup, including both simulation and real robot experiments.
Finally, in Sec. V, we present the conclusions and discuss
future developments of our research.



II. RELATED WORK

A. Classical Path Planning

There are two main approaches to classical path plan-
ning algorithms: search-based and sampling-based methods.
Search-based path planning provides mathematical guar-
antees of converging to a solution if it exists. A∗ and
its modifications have since found extensive use in robot
navigation due to their simplicity in implementation and
effectiveness in finding valid paths. For instance, in [10]
the authors introduced an extension of A∗ to drive a mobile
platform to sanitize rooms. In [11], [12] A∗ algorithms were
used to find collision-free paths for a legged or legged-
wheeled [13], [14] robots to achieve autonomous navigation.
Extensions to these include footstep perception [15], [16],
[17] and planning [18], or even navigation among movable
obstacles [19], [20], [21]. Traditional methods heavily rely
on a fixed heuristic function, such as the Euclidean distance,
which lacks adaptability to varying robot configurations and
environments. In our work, we propose a novel approach
where we learn a heuristic based on the visual appearance
of the application scenarios allowing the robot to make more
informed decisions and thus reducing the overall search area
and planning time.

Sampling-based planners efficiently create paths in high-
dimensional space by sampling points in the state space.
They can effectively work with continuous spaces. The
literature in this context is vast, especially for applications
in legged robotics. Some notable contributions in the field
include [4], where an extension of an RRT-based algorithm
is used for controlling a quadruped robot during the DARPA
Challenge in 2015. More recently [5] introduced a novel
sampling-based planner that shortens the computational time
to find a new path in quadrupedal robots. While these
approaches demonstrate satisfactory performance and prob-
abilistic convergence, their limitations lie in the inability
to incorporate image-based information directly into the
planning process. As a result, their application is restricted
in scenarios where planning based on visual data is not
essential.

B. Data-Driven Path Planning

In contrast to the classical path-planning methods, state-
of-the-art research in the field has shifted towards more prac-
tical solutions, which involve incorporating machine learning
techniques. Data-driven methods have emerged as robust
solutions to address these challenges by directly learning the
behavior of pathfinding. These methods employ approaches
such as expert demonstration [22] or imitation learning [6]
to learn how to plan paths. Recent works directly address
the issue of lack of semantically labeled maps in classical
search-based methods by using data-driven approaches di-
rectly on raw image [23], [6], [24]. Specifically, Yonetani et
al. [7] introduced Neural A∗ – a differentiable variant of the
canonical A∗, coupled with a neural network trained end-
to-end. The method works by encoding natural image inputs
into guidance maps and searching for path-planning solutions

on them, resulting in significant performance improvements
over previous approaches both in terms of efficiency and
optimality. Our work expands upon this paper.

C. Vision Transformers

While methods such as the Neural A∗ [7] have shown
great promise in terms of performance improvements, they
face limitations in processing larger maps due to the use
of Convolutional Neural Networks (CNNs), where dealing
with maps with increasing size could lead to a reduction
in performance. This has posed some constraints in terms
of processing larger maps. Transformers have emerged as a
promising alternative, exhibiting significant performance im-
provements in various computer vision tasks [25], [26], [27]
and robot vision tasks [28], [29], [30]. Transformers have the
ability to capture long-range dependencies in images, thanks
to their self-attention layers that enable them to attend to
any part of the image regardless of the distance from the
current location [9], [31]. This is in contrast to CNNs, which
are confined to focus on local image patches. Moreover,
due to their stacked layers, transformers can learn more
complex relationships between different parts of the images
while assuming fewer inductive biases [31]. In this work, we
exploit the capability of the transformers to learn long-range
dependencies to enhance the Neural A* performances with
larger maps.

III. VIT-BASED NEURAL A∗ PATH PLANNER

A. Neural A∗ Planner

This work expands upon the Neural A∗ Path Planner,
introduced in [7]. Our method aims to provide global path
plans as depicted in Fig. 2. In our approach, we introduce
a ViT network, instead of the original CNN-based encoder-
decoder structure, to process 2D maps of the environment.
Unlike classification tasks using transformers that output a
fixed-sized vector, our design allows a path planner to operate
on variable-sized map inputs. To achieve this, we incorporate
a decoder architecture that converts the embedded vectors
for individual image patches back to the required guidance
map. By utilizing the attention mechanism, our planner
can effectively focus on key features in the planner task,
such as obstacles, as well as start and goal positions, while
exploiting the differentiable A∗’s ability to learn the decoding
efficiently.

Neural A∗ is a path planning algorithm that combines
the convergence guarantees of A∗ with the flexibility that
characterizes a neural network to learn how to exploit visual
cues in order to find near-optimal paths. In our setting, a i-th
path planning problem is defined as

Qi = (Xi, vis, v
i
g,P

i), (1)

where Xi represents a 2D map of the current scenario, vis
and vig are respectively the start and goal position, and P i is
a ground truth binary map representing the desired path. The
Neural A∗ path planner is composed of distinct sequential
steps. Firstly, the 2D map Xi which has dimensions of H×
W × C, where H and M are the dimensions of the map



Fig. 2: Overall system, tested on the real robots. The 2D map is decomposed into patches and then fed to the ViT module.
After the encoding-decoding process, the resulting Guidance Map is given to the A∗ and it is used to find a global path.
Finally, the global path is executed by the navigation stack, which controls the real robot to ensure small tracking errors.

and C indicates the number of color channels (C = 3 for
RGB maps and C = 1 for binary occupancy maps) is fed to
a CNN-based encoder. The encoder learns to map the raw
image input to a guidance map defined as

f : RH×W×C → RH×W .

The guidance map represents the cost of traveling to ad-
jacent nodes in the map, which is equivalent to the sum
of the heuristic cost and the grid travel cost in regular A∗

algorithms. Finally, a minimal cost path is found, following
the guidance map and using the traditional A∗ algorithm to
explore the search space and find a valid path.

The differentiability of the path-finding process in the
neural A∗ path planner plays a crucial role in enabling
the training of the CNN-based encoder pre-processor. This
allows the neural network to learn and capture the essential
features and patterns required for efficient path planning.
The differentiability is achieved through a full matrix refor-
mulation of the A∗ algorithm, enabling the computation of
gradients accounting for every search step during the back-
propagation stage. In this paper, we focus solely on the node
selection step for the original A∗ for the sake of simplicity
(for Neural A∗ the cost terms in the node selections step
are replaced with the guidance map). Therefore, given the
regular A∗ node selection rule:

v∗ = argminv∈O (g(v) + h(v)) , (2)

where O represents the list of candidate nodes (assuming a
2D map represented a graph where each pixel is a node), g(v)
refers to the accumulated total cost on the optimal path up to
the node v, and h(v) is the heuristic function that provides
an estimation from the candidate node to the goal, the node
selection step of the A∗ path planner can be redefined in a
matrix form as:

V∗ = Imax

(
exp (−(G+H)/τ)⊙O

⟨exp (−(G+H)/τ) , O⟩

)
, (3)

where the functions G and H are the matrix formulation
of the functions g(v) and h(v) respectively. The one-hot-
encoding scheme is used in the following steps, which acts

as a matrix mask such that only the selected node has the
value one and zero otherwise. The one-hot-encoding for the
next optimal node is denoted as V∗. The parameter τ is
determined empirically, and the symbol A⊙B indicates an
element-wise product between matrices A and B. During
the forward pass, Imax is determined using the argmax
function, while during back-propagation, it is treated as an
identity.

The loss function is computed as the average L1 loss
between the selected nodes from the A∗ denoted as P (which
represents a global path), and the ground-truth path map P i,
which is given as input:

L = ∥P −P i∥1/V (4)

This loss function serves to supervise the guidance map
driven nodes selection by penalizing two types of errors:
the absence of nodes that should have been included in P
to correctly reconstruct P i, and the presence of an excessive
number of nodes in P that do not belong to P i.

B. Vision Transformer for Guidance Map Encoding

To achieve a sophisticated and attention-based encoding
for raw image inputs, we have introduced a Vision Trans-
former (ViT) [9] to extend the capability of the proposed
method. The purpose of the model is to encode an input
image into a guidance map by taking into account the visual
cues. Detailed schematics of the ViT module can be found
in Fig. 2.

The input map is initially represented as a tensor

Xi ∈ RH×W×C ,

where H , W , and C have already been defined in Sec III-A.
Since the ViT module expects a sequential input, we reshape
the map matrix into a flattened sequence of 2D patch vectors
denoted as xs, with the shape of xs ∈ RN×(S2·C). Here, S
represents a hyper-parameter indicating the patch dimension,
and N = HW/S2 is the resulting number of patches from
the map input.



(a) office01
(280× 280)

(b) room02
(360× 360)

(c) office02
(600× 600)

(d) maze
(600× 600)

(e) mall
(760× 760)

Fig. 3: Maps used for comparing different planning methods with their sizes.

To ensure that the input map size is compatible with
the required patches, we have introduced padding. This is
necessary when the dimensions of the input map, H and W ,
are not an integer multiple of patch size S, and thus may not
be segmented into the required patches.

In the sequence of patches, we incorporate a positional
embedding, following the approach used in the ViT mod-
els [9]. This positional embedding serves to indicate the
positional relationship between the patches, mimicking the
spatial information presented in the original raw image.

To address the challenge of variable size inputs, we follow
the idea proposed in the work presented in [32] where a
positional upper bound representing the maximum number
of possible patches is introduced. This ensures that the
model can handle inputs of varying sizes without sacrificing
training efficiency. Subsequently, each vector in the sequence
is subjected to encoding, leading to the generation of an
embedded vector projected into the hidden dimension. This
encoding process effectively converts the input patches into
a latent representation that captures their significant features.

Finally, the embedded vector sequence is decoded into
vectors of size S2 using the reconstruction decoder. The
purpose of this decoder is to reconstruct the guidance map,
which is required to have the same dimensions as the input
map. The guidance map is a crucial component as it provides
essential information for the planning cost. Each individ-
ual entry in the guidance map represents a corresponding
guidance cost for planning, facilitating the decision-making
process based on the encoded visual cues captured by the
model.

IV. EXPERIMENTAL RESULTS

In this section, we test our method. Firstly, in Sec. IV-A,
we run a path planning comparison between standard A∗,
Neural Network-based A∗ and ViT-based A∗. In Sec. IV-B,
we test our method on two real robots, Boston Dynamics
Spot and Unitree Go1.

A. Benchmarking Comparison

Here, we compare our proposed ViT-based A∗ path
planner (ViT-A∗) as described in Sec. III-B, against two
baselines: the Neural Network-based A∗ (N-A∗) [7] and a
classic A∗ planner, as described in Sec. III-A. The evaluation
is based on 2D maps coming from the MRPB benchmark
dataset [33]. As we enabled our planner to work on variable

maps ViT-A∗ N-A∗ A∗

(a) 5.68 4.70 6.03
(b) 17.31 14.73 17.51
(c) 4.81 5.17 15.59
(d) 69.97 75.20 84.84
(e) 12.73 16.57 36.24

TABLE I: Planning time: Average run-time (in sec) required
to solve a single planning problem on maps from Fig. 3.

map dimensions without specific training, the maps selected
have different sizes that range from 280× 280 to 760× 760
pixels, and are all depicting realistic scenarios, such as offices
or rooms (Fig. 3), which helps to bridge the reality gap when
deploying the proposed method on real quadrupedal robots.

To guarantee an effective comparison, we defined a pre-
cise generation protocol for testing cases. First, to test the
planners’ generalization capability (especially for maps with
different sizes) we generate random samples of start and goal
positions. The randomly generated start and goal must not
intersect with obstacles in order to define a valid test case.
This constraint, together with the fact that there are no closed

(a) Problem Instance (b) Regular A∗

(c) Neural-A∗ (d) ViT-A∗

Fig. 4: Visualization of planning results by Regular A*,
Neural A*, and ViT A*. In greem, the search area.



Fig. 5: From left to right we show a sequence of the Unitree Go1 (top) and Boston Dynamics Spot (bottom) robots navigating
around obstacles using the ViT-A∗ driven navigation stack.

regions in the map we used, ensures the completeness of the
plan so it is ensured that a solution path exists. Furthermore,
to avoid trivial planning tasks that are too short in length,
we force the generation process to separate the start and goal
positions by a threshold value. Hence, every planning task
exceeds a certain length in the experiments.

In the experiments, we applied the loss function defined in
Eq. 4 to train both models. To train the models, the RMSprop
optimizer is selected and for both models, a learning rate of
0.001 is used. The CNN model and the ViT model are trained
on the same dataset for 300 epochs or until converge criteria
are met.

Each planner is evaluated by considering the planning time
metric. The planning time is a key feature in evaluating the
quality of a planner since it is a measure of the algorithm’s
efficiency.

The results shown in Table I are obtained by running each
planner on the maps shown in Fig. 3. For each map, we
compute the average planning time by repeating the path
planning task 25 times with different start and goal positions.
from Table I it is clear how our approach outperforms N-A∗

and A∗ especially for maps with larger size. Moreover, in
Fig. 4 we show one instance of global path planning for
the mall map (Fig. 3e). In this figure, it is apparent that our
method is more efficient in finding a path due to the reduction
of the search area depicted in green.

B. Experiments on Real Quadrupeds

To integrate the ViT-based A∗ path planner with the legged
robot’s navigation system, the planner is incorporated into an
existing 2D ROS Navigation stack1 as a global path planner
module. The overall architecture of the navigation stack is
illustrated in Fig. 6.

Within the stack, the ViT-A∗ module generates the glob-
ally optimal path given the occupancy map. This path is
then refined via the local planner to ensure compliance with
the robot’s kinodynamic constraints. In this case, the Timed-
Elastic-Band (TEB)[34], [35] local planner is employed. To
mitigate the impact of state estimation on the quality of

1http://wiki.ros.org/navigation

Fig. 6: The schematic structure of the navigation stack for
the real robot.

evaluation of the path planning module, an external tracking
system, specifically the Phasespace tracking cameras2, is
utilized. These cameras offer real-time localization for the
robot at 960 Hz. Examples of the robots with active LED
tracking markers can be seen in Fig. 1.

Note that in order to integrate the Neural A∗ module as a
global planner plugin, several modifications were necessary
to interface it with the rest of the navigation stack. Firstly,
the navigation stack utilizes the OccupancyGrid message
to encode the map, which represents each cell in the map
with the obstacle probability po ∈ [0, 100]. However, the
current version of the ViT-A∗ module can only take a binary
occupancy map as input, where each celli ∈ {0, 1}. To
convert the map, an occupancy threshold t is applied, in
accordance to

celli =

{
1, po ≥ t

0, otherwise
(5)

Furthermore, the ViT-A∗ module only produces paths as
a sequence of positions, without considering the robot’s
orientation. Consequently, to generate the 3 Degrees of
Freedom path compatible with the ROS stack, a simple

2https://www.phasespace.com/



forward-only orientation filter is implemented. This filter
defines the orientation as the direction facing forward along
the path, given a sequence of positions {vi} extracted from a
global path, excluding the start and goal positions vs and vg
(as their orientations are fixed by inputs - i.e. the current pose
of the robot and desired goal pose). Hence, the orientation
θi is defined as:

θi = cos−1 vi · vi+1

|vi||vi+1|
(6)

To validate the complete pipeline, tests were conducted on
two real robots: Boston Dynamics Spot and Unitree Go1.
In these tests, a predefined map is fed into the ViT-A∗

module, which generates a global path. Subsequently, the
robot executes the planned path via the ROS stack described
in Figure 6. The effectiveness of the pipeline has been
demonstrated in navigation scenarios around obstacles in our
laboratory, as shown in Figure 5.

V. CONCLUSION
In this study, we present the ViT-A∗ planning strategy that

enables quadrupedal robots to autonomously and safely navi-
gate in various and complex scenarios. Our proposed method
builds upon recent advancements in differential planning and
introduces a pre-processing model based on ViT, enabling
our approach to handle maps of any size. The effectiveness of
the proposed approach has been validated through successful
comparison in simulation and on real quadrupedal robots
across different scenarios. In future work, we intend to
evaluate the performance of our method in outdoor or more
complex settings (e.g., autonomous task planning [36]) and
explore the benefits of planning directly on an RGB map
with a ground truth path designed by humans.
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[34] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Tra-
jectory modification considering dynamic constraints of autonomous
robots,” in German Conference on Robotics. VDE, 2012, pp. 1–6.

[35] ——, “Efficient Trajectory Optimization Using a Sparse Model,” in
European Conference on Mobile Robots. IEEE, 2013, pp. 138–143.

[36] C. Zhou, C. Peers, Y. Wan, R. Richardson, and D. Kanoulas,
“TeLeMan: Teleoperation for Legged Robot Loco-Manipulation using
Wearable IMU-based Motion Capture,” arXiv, 2022.


	INTRODUCTION
	RELATED WORK
	Classical Path Planning
	Data-Driven Path Planning
	Vision Transformers

	ViT-BASED NEURAL A* PATH PLANNER
	Neural A* Planner
	Vision Transformer for Guidance Map Encoding

	EXPERIMENTAL RESULTS
	Benchmarking Comparison
	Experiments on Real Quadrupeds

	CONCLUSION
	References

