Humanoid Robot Falling: Fall Detection, Damage Prevention, and Recovery Actions

Dimitrios Kanoulas1, Jinoh Lee2, Abderrahmane Kheddar3, Yohei Kakiuchi4

Abstract— Research on humanoid robots has focused mainly on reliable perception, planning, and control methods for completing challenging tasks. The DARPA Robotics Challenge 2015 showed that when the tether is removed, legged robots may inevitably fall over during a task in an unstructured environment; either when they walk on a flat or rough terrain, or when they are cutting a wall with a drill, opening a door, and turning a valve. In a lot of cases if a humanoid robot falls over, it may end up with a serious damage for itself or the environment. If not, the robot in a real world scenario should recover, stand up, and complete the task. Being able to detect such a fall, apply the appropriate actions to prevent a big damage both on the robot and the environment around it, and recover if possible, are necessary for a real world application, where humanoid robots will need to deal with even rougher terrain and more complicated manipulation tasks under significant uncertainty either for static or dynamically changing environments.

This workshop provided a platform for researchers from all areas in robotics to disseminate and exchange ideas, evaluating their advantages and drawbacks. This included from the mechanical design and biomechanics to the perception, planning, and whole-body control methods on real robots and simulations for fall detection, damage prevention, and recovery actions in a falling over scenario. The aim was to foster collaboration among researchers that are working on humanoid robots to advance the very limited state-of-the-art work in this area.

I. TOPICS OF INTEREST

- mechanical design for a falling scenario and soft robotics
- robotic simulation for falling
- exteroceptive and proprioceptive perception for fall detection
- fall planning and recovery
- damage prevention control
- collision avoidance and self-collision avoidance
- reactive behaviors and emergency behaviors
- biomechanical analysis of human fall detection

*This workshop is supported by the European Commission H2020 projects: ICT-23-2014 CogIMon (no. 644727)and ICT-23-2014 CO-MANOID (no. 645097).

1Dimitrios Kanoulas is with the Humanoids and Human Centered Mechatronics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy. Dimitrios.Kanoulas@iit.it

2Jinoh Lee is with the Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy. Jinoh.Lee@iit.it

3Abderrahmane Kheddar is with the University of Montpellier-CNRS LIRMM, Interactive Digital Humans, Montpellier, France. kheddar@lirmm.fr

4Yohei Kakiuchi is with the the Department of Mechano-Informatics, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. youhei@jsk.t.u-tokyo.ac.jp

- whole-body control fall/recovery strategies

url: https://iros2018wsfallingrobots.wordpress.com

II. SPEAKERS

- Dr. Abderrahmane Kheddar – University of Montpellier-CNRS LIRMM, France.
- Prof. Amy Laviers – Univ. of Illinois at Urbana-Champaign, USA.
- Dr. Shuji Kajita – AIST, Japan.
- Dr. Yohei Kakiuchi – JSK, Japan.
- Dr. Jinoh Lee – IIT, Italy.
- Dr. Libo Meng (Prof. Z. Yu, Prof. Q. Huang) – Beijing Inst. of Tech., China.
- Prof. Sven Behnke – Univ. of Bonn, Germany.

ACKNOWLEDGMENT

This workshop is supported by the following IEEE RAS Technical Committees:

1) IEEE RAS Technical Committee on Humanoids Robotics as confirmed as confirmed by the Technical Committee co-chairs Katsu Yamane, Giorgio Metta, and Tomomichi Sugihara.

2) IEEE RAS Technical Committee on Algorithms for Planning and Control of Robot Motion as confirmed by the Technical Committee co-chairs Sertac Karaman and Lydia Tapia.

3) IEEE RAS Technical Committee on Robotics and Automation in Nuclear Facilities, as confirmed by the Technical Committee co-chairs William R. Hamel, Hajime Asama, Raja Chatila, and Yoshihiko Nakamura.

IEEE RAS Technical Committee on Whole-Body Control, as confirmed by the Technical Committee co-chairs Federico Moro, Jaeheung Park, and Luis Sentis.

This workshop is supported by the following RSJ Special Interest Group:

1) RSJ Special Interest Group on Humanoid Robotics, as confirmed by Tomomichi Sugihara.

We would also like to thank Prof. Ambarish Goswami, who, as in our previous workshop event on this topic, helped a lot on the organization. His priceless support on the topic, given that he is one of the first to study humanoid robot falling strategies, was very important.

Second Workshop on: “Humanoid Robot Falling: Fall Detection, Damage Prevention, and Recovery Actions”
IROS 2018, Madrid, Spain
2nd Full-Day Workshop on:

Humanoid Robot Falling: Fall Detection, Damage Prevention, and Recovery Actions.

Dimitrios Kanoulas, Jinoh Lee, Abderrahmane Kheddar, Yohei Kakiuchi
Contents

1 Introduction
1.1 Objectives ... 4
1.2 Topics of Interest ... 5
1.3 Support ... 5
1.4 Acknowledgment ... 5
1.5 Organizers ... 6

2. Program
2.1 Program Schedule ... 7
2.2 Invited Speakers ... 8
2.3 Poster Presenters ... 8

3. Invited Speakers
3.0 Dr. Dimitrios Kanoulas ... 9
3.1 Dr. Shuuji Kajita .. 9
3.2 Prof. Amy Laviers .. 9
3.3 Dr. Abderrahmane Kheddar 10
3.4 Dr. Yohei Kakiuchi .. 10
3.5 Dr. Jinoh Lee ... 10
3.6 Dr. Libo Meng ... 11
3.7 Prof. Sven Behnke ... 11

4. Posters and Short Papers
5.1 Junhyung Kim, Jaehoon Sim, and Jaeheung Park 12
5.2 Noel Maalouf, Imad H. Elhajj, Elie Shammas, and Daniel Asmar 12
5.3 H. Jafari, M. Pauelsen, U. Röijezon, L. Nyberg, G. Nikolakopoulos,
and T. Gustafsson ... 12
5.4 Juan A. Castano, Chengxu Zhou, and Nikos G. Tsagarakis 12

5. Presentation Slides and Photos
Slides: https://iros2018wsfallingrobots.wordpress.com/program
Photos: https://iros2018wsfallingrobots.wordpress.com/2018/10/10/thanks
1. Introduction

1.1 Objectives

Webpage: https://iros2018wsfallingrobots.wordpress.com
Facebook: https://www.facebook.com/fallingrobots
Video: https://youtu.be/ZepZZCoohz4

Research on humanoid robots has focused mainly on reliable perception, planning, and control methods for completing challenging tasks. The DARPA Robotics Challenge 2015 showed that when the tether is removed, **legged robots may inevitable fall over** during a task in an unstructured environment; either when they walk on a flat or rough terrain, or when they are cutting a wall with a drill, opening a door, and turning a valve. In a lot of cases if a humanoid robot falls over, it may end up with a serious damage for itself or the environment. If not, the robot in a real world scenario should recover, stand up, and complete the task. Being able to **detect** such a fall, apply the appropriate actions to **prevent** a big damage both on the robot and the environment around it, and **recover** if possible, are necessary for a real world application, where humanoid robots will need to deal with even rougher terrain and more complicated manipulation tasks under significant uncertainty either for static or dynamically changing environments.

This workshop will provide a platform for researchers from **all areas in robotics** to disseminate and exchange ideas, evaluating their advantages and drawbacks. This will include **from the mechanical design and biomechanics to the perception, planning, and whole-body control methods on real robots and simulations** for fall detection, damage prevention, and recovery actions in a falling over scenario. The aim is to foster collaboration among researchers that are working on humanoid robots to advance the very limited state-of-the-art work in this area.

We organize a **half-day workshop** consisting of a mixture of **presentations** on topics including design, sensing, perception, planning, biomechanics, and motion generation for humanoid robots designed to work indoors and outdoors. To stimulate interaction, we will also organize a **poster session** to encourage the participation of young researchers and promote the discussion with the speakers and the audience. Moreover we will allocate adequate time for questions and discussion to make the workshop as interactive as possible.

This workshop is the second to be organized on this topic, after our first successful attempt in ICRA 2016 (“Legged Robot Falling: Fall Detection, Damage Prevention, and Recovery Actions”), with a bigger focus on humanoid robots. This workshop is related also to the IROS’15 workshop on “The Path to Success: Failures in Real Robots” and the ICRA’15 workshop on “Dynamic Locomotion and Balancing of Humanoids: State of the Art and Challenges”, which were focused more on analyzing the cause of a fall, the fall recovery for toy-robots, and balancing. This **workshop** will focus on the action to follow an inevitable fall after it has been detected. We believe that such a workshop will attract a large number of participants and promote interaction and collaboration, given the emergent interest in humanoid failures rising also from the DRC 2015 results.
1.2 Topics of interest

- mechanical design for a falling scenario and soft robotics
- robotic simulation for falling
- exteroceptive and proprioceptive perception for fall detection
- fall planning and recovery
- damage prevention control
- collision avoidance and self-collision avoidance
- reactive behaviors and emergency behaviors
- biomechanical analysis of human fall detection
- whole-body control fall/recovery strategies

1.3 Support

This workshop is supported by the following IEEE RAS Technical Committees:

1. **IEEE RAS Technical Committee on Humanoids Robotics** as confirmed as confirmed by the Technical Committee co-chairs Katsu Yamane, Giorgio Metta, and Tomomichi Sugihara.

2. **IEEE RAS Technical Committee on Algorithms for Planning and Control of Robot Motion** as confirmed by the Technical Committee co-chairs Sertac Karaman and Lydia Tapia.

4. **IEEE RAS Technical Committee on Whole-Body Control**, as confirmed by the Technical Committee co-chairs Federico Moro, Jaeheung Park, and Luis Sentis.

This workshop is supported by the following RSJ Special Interest Group:

1. **RSJ Special Interest Group on Humanoid Robotics**, as confirmed by Tomomichi Sugihara.

We would also like to thank **Prof. Ambarish Goswami**, who, as in our previous workshop event on this topic, helped a lot on the organization. His priceless support on the topic, given that he is one of the first to study humanoid robot falling strategies, was very important.

1.4 Acknowledgement

This workshop is supported by:

1. The ICT-23-2014 **CogIMon** EU H2020 project (no. 644727): https://cogimon.eu

1.5 Organizers

Dr. Dimitrios Kanoulas, Italy (primary contact)
Address: Via Morego, 30, Genoa, Liguria 16163, Italy.
Affiliation: Humanoids and Human Centered Mechatronics, Istituto Italiano di Tecnologia (IIT)
Email: Dimitrios.Kanoulas@iit.it
URL: http://dkanou.github.io

Dr. Jinoh Lee, Italy
Address: Via Morego, 30, Genoa, Liguria 16163, Italy.
Affiliation: Department of Advanced Robotics, Istituto Italiano di Tecnologia (IIT)
Email: Jinoh.Lee@iit.it
URL: https://www.iit.it/people/jinoh-lee

Prof. Abderrahmane Kheddar, Japan/France
Address: 860 rue de St Priest, Montpellier cedex 5, 34095, France.
Affiliation: CNRS & CNRS-AIST Joint Robotic Laboratory (JRL)
Email: kheddar@lirmm.fr
URL: http://www.lirmm.fr/lirmm_eng/users/utilisateurs-lirmm/equipes/idh/abderrahmane-kheddar

Dr. Yohei Kakiuchi, Japan
Address: Building No. 2, Hongo Campus, 7-3-1, Hongo, Bunky-ku, Tokyo, 113-8656, Japan
Affiliation: JSK Robotics Laboratory, Univ. of Tokyo
Email: youhei@jsk.t.u-tokyo.ac.jp
URL: http://www.jsk.t.u-tokyo.ac.jp/~youhei
2. Program

2.1 Program Schedule

09:00 – 09:15 Dr. Dimitrios Kanoulas — HHCM, IIT
Title: “Introduction to the workshop” [slides]

09:15 – 09:45 Dr. Shuuji Kajita — AIST, Japan.
Title: “Airbag System Developments for Humanoid Falling” [slides]

09:45 – 10:15 Prof. Amy Laviers — Univ. of Illinois at Urbana-Champaign, USA.
Title: “Human Fall Strategies: The Bartenieff Principle of Weight Shift From the Pelvic Core and Its Role in Producing an Expressive Bipedal Walker” [slides]

10:15 – 10:45 Dr. Abderrahmane Kheddar — CNRS & CNRS-AIST, France.
Title: “Humanoid Falls with Active Postural Reshaping and Adaptive Compliance” [slides]

10:45 – 11:30 Coffee Break & Poster Session with Spotlight Talks
- Junhyung Kim, Jaehoon Sim, and Jaeheung Park
 Title: “Humanoid fall recovery strategy using air thrust” [poster, paper]
- Noel Maalouf, Imad H. Elhajj, Elie Shammas, and Daniel Asmar
 Title: “Imitating Humans: Stable Humanoid Gait Design Based on Energy Exchange” [poster, paper]
 Title: “On Internal Modeling of the Upright Postural Control in Elderly” [poster, paper]
- Juan A. Castano, Chengxu Zhou, and Nikos G. Tsagarakis
 Title: “Heuristic Fall Recovery Strategy for a Wheel-Legged Quadruped Robot” [poster]

11:30 – 12:00 Dr. Yohei Kakiuchi (Prof. Masayuki Inaba) — JSK, Univ. of Tokyo, Japan.
Title: ”Humanoid Robot Design with Robustness for Falling Down” [slides]

12:00 – 12:30 Dr. Jinoh Lee — IIT, Italy.
Title: “Rolling! Energy Control Concepts for Humanoid Falls.” [slides]

12:30 – 13:00 Dr. Libo Meng (Profs. Z. Yu, Q. Huang) — Beijing Inst. of Tech., China.
Title: “Humanoid Falling Study on BHR-6P” [slides]

13:00 – 13:30 Prof. Sven Behnke — Univ. of Bonn, Germany.
Title: “Push Recovery, Fall Survival, and Getting-up of NimbRo Humanoid Soccer Robots” [slides]

13:30 – 14:00 Closing Remarks
2.2 Invited Speakers

- Dr. Abderrahmane Kheddar — *University of Montpellier-CNRS LIRMM, France.*
- Prof. Amy Laviers — *Univ. of Illinois at Urbana-Champaign, USA.*
- Dr. Shuuji Kajita — *AIST, Japan.*
- Dr. Yohei Kakiuchi — *JSK, Japan.*
- Dr. Jinoh Lee — *Istituto Italiano di Tecnologia (IIT), Italy.*
- Dr. Libo Meng (Prof. Z. Yu, Prof. Q. Huang) — *Beijing Inst. of Tech., China.*
- Prof. Sven Behnke — *Univ. of Bonn, Germany.*

2.3 Poster Presentations

1. Junhyung Kim, Jaehoon Sim, and Jaeheung Park — *Seoul National University, Republic of Korea.*
3. Invited Speakers

3.0 Dr. Dimitrios Kanoulas — *IIT, Italy.*

Title: “Introduction to the workshop” [slides]

3.1 Dr. Shuuji Kajita — *AIST, Japan.*

Title: “Airbag System Developments for Humanoid Falling” [slides]

3.2 Prof. Amy Laviers — *Univ. of Illinois at Urbana-Champaign, USA.*

Title: “Human Fall Strategies: The Bartenieff Principle of Weight Shift From the Pelvic Core and Its Role in Producing an Expressive Bipedal Walker” [slides]
3.3 Dr. Abderrahmane Kheddar — CNRS & CNRS-AIST, France.

Title: "Humanoid Falls with Active Postural Reshaping and Adaptive Compliance" [slides]

3.4 Dr. Yohei Kakiuchi — JSK, Japan.

Title: "Humanoid Robot Design with Robustness for Falling Down" [slides]

3.5 Dr. Jinoh Lee — IIT, Italy.

Title: "Rolling! Energy Control Concepts for Humanoid Falls." [slides]
3.6 Dr. Libo Meng — Beijing Inst. of Tech., China.

Title: “Humanoid Falling Study on BHR-6P” [slides]

3.7 Prof. Sven Behnke — Univ. of Bonn, Germany.

Title: “Push Recovery, Fall Survival, and Getting-up of NimbRo Humanoid Soccer Robots” [slides]
4. Posters and Short Papers

4.1 Junhyung Kim, Jaehoon Sim, and Jaeheung Park — Seoul National University, Republic of Korea.

Title: “Humanoid fall recovery strategy using air thrust” [poster, paper]

4.2 Noel Maalouf, Imad H. Elhajj, Elie Shammas, and Daniel Asmar — American University of Beirut, Lebanon.

Title: “Imitating Humans: Stable Humanoid Gait Design Based on Energy Exchange” [poster, paper]

Title: “On Internal Modeling of the Upright Postural Control in Elderly” [poster, paper]

4.4 Juan A. Castano, Chengxu Zhou, and Nikos G. Tsagarakis — Istituto Italiano di Tecnologia, Italy.

Title: “Heuristic Fall Recovery Strategy for a Wheel-Legged Quadruped Robot” [poster]