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Abstract— We present a Gaussian uncertainty analysis of
bounded curved patches that fit to local rough surfaces and are
suitable for representing foothold or handhold contacts between
an articulated robot and the environment. The input is a set
of 3D point samples with 3×3 covariance matrices that express
their Gaussian uncertainty. We first introduce uncertainty
propagation of geometrical patch parameters during fitting on
range samples. The output for each patch includes a covariance
matrix in its parametric space. We also introduce a set of
distance metrics to validate the magnitude of the propagated
uncertainty and we run a set of tests on various range data.
The importance of this paper lies in the uncertainty analysis
for curved contact patches that can be further applied during
locomotion or manipulation.

I. INTRODUCTION

Robots with limbs often require reliable contact with the
environment. Exteroceptive sensing, such as range measure-
ment, plays an important role in detecting contact areas from
a distance and planning for foothold or handhold placement.
The problem becomes particularly interesting with irregular
surfaces, where the uncertainty of the environment is sig-
nificant and the input data are subject to sensing errors. To
reason about any contact with a surface using range data, an
uncertainty analysis can help evaluate the risk of the action.

In prior work [1] we introduced a set of bounded curved
patches (Fig. 1) to model contacts on rough terrain using
geometrically meaningful parameters. We also presented
an algorithm to fit patches to noisy heteroskedastic (non-
uniform variance) point cloud data from a range sensor. In
this paper, we first present the detailed error propagation dur-
ing the patch fitting process, assuming Gaussian uncertainty
in the input range data, expressed as a 3×3 covariance matrix
(ellipsoid in the 3D Euclidean space). The fitted patch’s
uncertainty is also expressed as a covariance matrix in its
parametric space. We then describe a set of quantitative
distance metrics to evaluate the magnitude of the propagated
uncertainty based on the covariance. The advantage of patch
parametrization is that it is geometrically meaningful, ex-
pressing poses (i.e., rotations and translations), curvatures,
and lengths/angles for the boundaries. Thus, the uncertainty
propagation has a direct geometric meaning that can be
analyzed and used for risk evaluation during a contact
planning.
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Fig. 1. Patch types and local coordinate frames, introduced in [1].

This work is the first to discuss uncertainty evaluation
for curved contact patches with geometrically meaningful
parameters using range data. We consider this task necessary
and important for handhold or foothold contact planning
with irregular surfaces. Moreover, the patches with their
uncertainty could potentially serve as features for feature-
based 3D mapping in the context of SLAM (Simultane-
ous Localization and Mapping), in a similar way that has
been used in [2] for planes, providing a faster and more
space efficient representation. We experimentally evaluate the
uncertainty propagation on point cloud samples both from
simulated and real range sensors. We have implemented the
proposed approach in the Surface Patch Library (SPL), with
sourcecode available on our website [3].

Next we cover related work, followed by a review of the
patch modeling and fitting process along with the uncertainty
propagation on heteroskedastic range data. Then we describe
the evaluation distance metrics for the Gaussian uncertainty
in the patch parametric space. Finally, we experimentally
validate the error propagation on simulated and real range
samples.

A. Related Work

Modeling surfaces using range data either for contact [4],
[5] or mapping [2] has a significant history in robot locomo-
tion [6] and manipulation [7]. The importance of representing
uncertainty goes back to the origins of robotics [8], especially
for 3D range data [9], but only recently has been considered
for mobile manipulators [10] and rough terrain robots [11].

Most of the work in the past has been focused on modeling
range data uncertainty so that it can be used during a
typical Kalman-type SLAM system. Gaussian modeling with
covariance matrices is one of the ways to quantify uncertainty
and we will use this representation in this paper. There has
been a lot of work on how to determine the covariance
matrices for range data. We are going to use the approach
introduced in [12], which is based on a pointing/disparity
stereo error model. Recently, an uncertainty model for the
Kinect sensor has been introduced in [13], while a mixture
of Gaussians has been also used in [14], providing alternative
construction methods of covariance matrices.



Fig. 2. A paraboloid patch fitting: (i) the original paraboloid patch, (ii) the frustum and the measurement rays, (iii) 60 noisy sample range data, (iv) error
ellipsoids, (v) plane fitting, (vi) unbounded patch fitting, and (vii) boundary fitting.

Depending on the robotic application, Gaussian uncertain-
ties on range data have been propagated to various high
level structures that were used for contacts between robots
and the environment. For instance, [15] propagates them to
elevation maps, while [4], [5] to planar surfaces. The latter
work is the closest approach that this paper compares to,
with the difference that we provide propagation to bounded
curved surfaces that are geometrically parametrized, while
considering heterodastic range data uncertainties during the
fitting and error propagation. These type of uncertainties are
going to affect the way that a robot may contact a surface.

II. PATCH MODELING AND FITTING

Fig. 3. The RPBP [16], WALK-MAN [17], and COMAN [18] robots use
the bounded curved patches framework for locomotion and manipulation.

To model irregular surfaces of the size of the contacts
between a robot hand/foot and the environment, we intro-
duced in [1] a set of ten bounded curved patches—eight
paraboloids and two non-paraboloids (Fig. 1)—that balance
expressiveness with compactness of representation. These
patches have been later used for locomotion [16], [17]
and manipulation [18] on three different humanoid robots
(Fig. 3). We briefly review elliptic/hyperbolic paraboloid’s
geometric parametrization, while in the next section we
present the uncertainty propagation based on all patch types.
We also describe in brief the patch fitting process using
point cloud data that come from a range sensor with their
uncertainty expressed as 3×3 covariance matrices. Due to
space constraints we must refer readers to the original paper
for a full model and a detailed algorithm description.

Patches have two types of intrinsic parameters depending
on their model (up to two principal curvatures κx,y and up

to five boundary lengths and angles) and up to six extrinsic
parameters (r ∈ R3 rotation and c ∈ R3 translation vector)
that provide the pose of the local coordinate frame of each
patch in the world frame (Table I). For instance, the implicit
form for a paraboloid patch in its local frame is:

ql
T diag(κx, κy, 0)ql − 2ql

T [0 0 1]T = 0, (1)

where ql ∈ R3 is a point on the patch. Elliptic/hyperbolic
paraboloid patches are bounded with ellipses in the local xy
patch frame axes, which are aligned and centered at c. We
parametrize an ellipse with its radii de , [dx dy]

T as a
subset of the full surface that satisfies:

0 > uT diag([1/d2
x 1/d2

y])u − 1, (2)

where u is the projection of all 3D points ql on the local xy
patch frame.

The fitting process takes as input N 3D points qi ∈
R3, their covariance matrices Σi ∈ R3×3, a patch type
s ∈ {parab, plane, sphere, ccyl}, and a boundary type
b ∈ {ellipse, circle, aarect, cquad} if the patch type is
a s = plane (otherwise it is implied). The output is the
patch parameters that were described above. In this paper
we extend the method to also include the uncertainty of
the patch as a covariance matrix Σ ∈ Rp×p, where p is
the DoF of the patch type. The fitting proceeds in two
stages, where first an unbounded surface is fitted followed
by the bound fitting, using the projected to the local xy
plane sample points. An important aspect of the process that
was described in [1] has to do with the nonlinear χ2 fitting
problem and the optimization solution that we proposed–
named weighted Levenberg-Marquardt (WLM)–where the
heterodastic variance of the sample points are considered
during the fitting. The WLM method returns by design the
covariance matrix Σ ∈ Rp×p of the fitted surface. In the
next section we will go through the fitting algorithm as
described in [1] and mathematically formulate the first order
error propagation.

III. GAUSSIAN UNCERTAINTY PROPAGATION

We now present the first order error propagation [19] for
the Gaussian uncertainty model expressed as a covariance
matrix Σ ∈ Rp×p in the patch parametric space p. The
input covariance matrix Σi ∈ R3×3 for each input sample
point qi ∈ R3 has been determined experimentally following
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Fig. 4. Uncertainty propagation diagram.

the process that was described in [12] for the Kinect sensor.
The pointing stereo error was estimated as σpoint = 0.35px,
while the disparity stereo error as σdisp = 0.17px. A
similar experimental analysis can be performed for any other
range sensor that may be available on a robotic platform. In
each step the input patch covariance matrix Σ will either
come from the WLM fitting algorithm or from the previous
propagation step. Σ’s subscripts are the parameters that are
included each time in the covariance matrix in the particular
order that they are referenced. A diagram of the propagation
is visualized in Fig. 4, while a paraboloid patch fitting is
illustrated in Fig. 2. We skip all the tedious but trivial partial
derivative computations, while the detailed reasoning behind
each fitting step and the pose representation choices can be
reviewed in [1].
Stage I-1 Plane Fitting
(i) First a Linear Least-Squares plane fitting takes place for
the input point samples qi, ignoring their uncertainty Σi.
If s 6=parab, the plane is re-fitted using the WLM method.
The output will be the rotation vector rxy ∈ R2 (considering
the symmetry around the local z-axis), the translation vector
c ∈ R3, and the covariance matrix of the [rxy c] vector
Σrxy,c ∈ R5×5, coming from the WLM fitting.
(ii) We then set c ′ = q̄ − ẑT` (q̄ − c)ẑ`, where q̄ =

(
∑N
i=1 qi)/N, ẑ` = R(r)ẑ, and r = [rxy 0]. Since in this

step we only change the position vector c after the WLM
fitting, the propagated output covariance Σrxy,c′ ∈ R5×5 will
be:

Σrxy,c′ = JΣJT (3)

J =

[
02×3 02×3 I2×2 02×3
∂c′T

∂ẑ`

∂c′T

∂q̄
∂c′T

∂rxy

∂c′T

∂c

]
∈ R5×11

Σ =

 Σẑ` 03×3 03×3
03×3 Σq̄ 03×3
05×5 05×5 Σrxy,c

 ∈ R11×11

Σẑ` =

(
∂R

∂r
ẑ

)
Σr

(
∂R

∂r
ẑ

)T
,Σq̄ =

1
N2

N∑
i=1

Σi

Stage I-2 Unbounded Surface Fitting
(i) If s 6=plane, an unbounded patch surface is fitted using

WLM, with the initial parameters from the previous step.
If s=parab, the WLM output is the curvature vector k =
[κx κy] ∈ R2, the rotation vector r ∈ R3, the translation
vector c ∈ R3, and the covariance matrix of the [k r c]
vector Σk,r,c ∈ R8×8. If the side-wall effect is handle by
reparametrization (see [3]), then a single patch parameter
c ∈ R is replacing the c and thus Σk,r,c ← JΣJT ∈ R6×6,
where J = I6×8, with J(6 : 8, 6) = ẑ` (i.e. the plane normal
vector from previous step).
If s = {ccyl,sphere}, the WLM output is a curvature k ∈ R,
the rotation matrix rxy, the translation vector c ∈ R3, and
the covariance matrix Σk,rxy,c ∈ R6×6.
(ii) If s=sphere, rxy is replaced with the one of Stage I-1
(r ′xy ← rxy) and thus:

Σk,r′
xy,c = JΣk,rxy,cJ

T ∈ R6×6 (4)

J =

01×2 1 01×3
I2×2 02×1 02×3
03×2 03×1 I3×3

 ∈ R6×6

If s=ccyl, we set r ′ = r(R`) = r([x̂` ŷ` ẑ`]) (log map), ẑ` =
R(r)ẑ, x̂` = R(r)x̂, and ŷ` = ẑ` × x̂` = [x̂`]

T
x ẑ` = [ẑ`]xx̂`.

Thus, the covariance matrix Σk,r′,c ∈ R7×7 can be calculated
as follows:

Σk,r′,c = JΣẑ`,x̂`,k,cJ
T ∈ R7×7 (5)

J =

01×3 01×3 1 01×3
∂r′

∂ẑ`

∂r′

∂x̂`
03×1 03×3

03×3 03×3 03×1 I3×3

 ∈ R7×10

Σẑ`,x̂`,k,c =

 Σẑ` 03×3 03×4
03×3 Σx̂` 03×4
04×3 04×3 Σk,c

 ∈ R10×10

Σẑ` =

(
∂R

∂r
ẑ

)
Σr

(
∂R

∂r
ẑ

)
,Σx̂` =

(
∂R

∂r
x̂

)
Σr

(
∂R

∂r
x̂

)T
Stage I-3 Curvature Discrimination (if s 6= parab)
In this step the paraboloid patches are refined according to
the fitted curvatures.
If max(|κx|, |κy|)< εk (a small threshold), set s = plane,
b= ellipse, and rxy = rxy(r). Given the covariance matrix
from the previous step Σk,r,c ∈ R8×8, we extract the new



covariance matrix Σrxy,c ∈ R5×5 as follows:

Σrxy,c = JΣk,r,cJ
T ∈ R5×5 (6)

J =

[
02×2

∂rxy

∂r 02×3
03×2 03×3 03×3

]
∈ R5×8

Else if min(|κx|, |κy|)<εk:
If |κy|>εk set s=cyl parab and k = κy. Given the input
covariance matrix Σk,r,c ∈ R8×8 compute the output Σk,r,c ∈
R7×7 as follows:

Σk,r,c = JΣk,r,cJ
T ∈ R7×7 (7)

J =

[0 1] 01×3 01×3
03×2 I3×3 03×3
03×2 03×3 I3×3

 ∈ R7×8

Else swap axes s.t. |κy|>εk, then set s=cyl parab, k = κy,
and r ′ = r(R(r)[ŷ − x̂ ẑ]) (log map). Given the input
covariance matrix Σk,r,c ∈ R8×8, we compute the output
Σk,r,c ∈ R7×7 as follows:

Σk,r,c = JΣk,r,cJ
T ∈ R7×7 (8)

J =

[0 1] 01×3 01×3

03×2
∂r′

∂r 03×3
03×2 03×3 I3×3

 ∈ R7×8

Else if |κx − κy|<εk, set s=circ parab, k =
κx+κy

2 , and
rxy = rxy(r). Given the input covariance matrix Σk,r,c ∈
R8×8 we compute the output Σk,rxy,c ∈ R6×6 as follows:

Σk,rxy,c = JΣk,r,cJ
T ∈ R6×6 (9)

J =

[1/2 1/2] 01×3 01×3

02×2
∂rxy

∂r 02×3
03×2 03×3 I3×3

 ∈ R6×8

Else (s= ell parab, hyp parab) there is no change in k, r,
and c, and thus no change in the covariance matrix.

In this stage an unbounded patch surface fit to the data and
the covariance matrix was propagated accordingly in the
space of the patch parameters, depending on its type. The
same process needs to be done for the boundary fitting as
presented below.

Stage II-4 Determine the Boundary Type (if s 6= plane)
In this step no action takes place, except that the type of
boundary is determined. Thus, there is no change in the
covariance matrix. Note that we also set λ ,

√
2 erf−1(Γ),

which is used later during fitting.

Stage II-5 Initialize the Bounding Parameters
In this stage the point samples are projected on the local xy
patch plane and thus it is needed to propagate the uncertainty
for the new projected data and their first order moments that
will be used later in the fitting. Let:

m =


x̄
ȳ
vx
vy
vxy

 =


x̂TXr(qi, r, c)
ŷTXr(qi, r, c)

(x̂TXr(qi, r, c))2

(ŷTXr(qi, r, c))2

(x̂TXr(qi, r, c))(ŷTXr(qi, r, c))

 , (10)

where x̄, ȳ are the average projected samples, vx, vy, and
vxy their first order moments, and q ′i , Xr(qi, r, c) =
R(−r)(qi−c) = (R(r))T (qi−c). Then, given the covariance
matrix Σk,r,c ∈ R(nk+nr+3)2

of the sample points and
patch parameters (nk curvatures and nr rotation vectors,
depending on the patch type), the propagated covariance
matrix Σm,k,r,c ∈ R(5+nk+nr+3)2

is computed as follows:

Σm,k,r,c = JΣq1...qN,k,r,cJ
TR(5+nk+nr+3)2

(11)

J =


∂m
∂q1

. . . ∂m
∂qN

05×nk

∂m
∂r

∂m
∂c

0nk×3 . . . 0nk×3 Ink×nk
0nk×nr

0nk×3
0nr×3 . . . 0nr×3 0nr×nk

Inr×nr
0nr×3

03×3 . . . 03×3 03×nk
03×nr

I3×3


J ∈ R(5+nk+nr+3)×(3N+nk+nr+3)

Stage II-6 Cylindrical Paraboloid and Circular Cylinder
In this step the translation vector is realigned given the
projected data, such that c ′ = R(r)(x̄x̂)+ c and the bound is
set as dr = λ[

√
vx − x̄2 √vy]T . Given the covariance matrix

Σm,k,r,c ∈ R12×12, the propagated Σdr,k,r,c ∈ R9×9 one can be
calculated as follows:

Σdr,k,r,c = JΣm,k,r,cJ
T ∈ R12×12 (12)

J =


∂dr

∂m 02×1 02×3 02×3
01×9 1 01×3 01×3
03×5 03×1 I3×3 03×3
∂c′

∂m 03×1
∂c′

∂r
∂c′

∂c

 ∈ R9×12

Stage II-7 Circular Paraboloid and Sphere
In this step the bound is set as dc = λmax(

√
vx,√vy). Given

the covariance matrix Σm,k,rxy,c ∈ R11×11, the propagated
Σdc,k,rxy,c ∈ R9×9 one can be calculated as follows:

Σdc,k,rxy,c = JΣm,k,rxy,cJ
T ∈ R11×11 (13)

J =


∂dc

∂m 0 01×2 01×3
01×5 1 01×2 01×3
02×5 02×1 I2×2 02×3
03×5 03×1 03×2 I3×3

 ∈ R7×11

Stage II-8 Elliptic and Hyperbolic Paraboloid
In this step the bound is set as de = λ[

√
vx
√
vy]
T . Given

the covariance matrix Σm,k,r,c ∈ R11×11, the propagated
Σde,k,r,c ∈ R13×13 one can be calculated as follows:

Σde,k,r,c = JΣm,k,r,cJ
T ∈ R13×13 (14)

J =


∂de

∂m 02×2 02×3 02×3
02×5 I2×2 02×3 02×3
03×5 03×2 I3×3 03×3
03×5 03×2 03×3 I3×3

 ∈ R13×10

Stage II-9 Plane
This is the most tedious step case, given the four different
options of planar bounds. The vectors rxy and c are avail-
able either from Stage I-1 or I-3. We set c ′ = Xf(x̄x̂ +

ȳŷ, rxy, c) = R(
[

rxy
0

]
)(x̄x̂+ ȳŷ)+ c and following [20], we



let:

ρ ,
[
α β φ

]T
=
[
vx − x̄2 2vxy − x̄ȳ vy − ȳ2

]T
l ,

[
l+
l−

]
=
√
− ln(1 − Γ)

√α+ φ+
√
D)√

α+ φ−
√
D)


D , β2 + (α− φ)2

Given the covariance matrix Σm,k,rxy,c ∈ R10×10, the prop-
agated Σl,ρ,rxy,c′ ∈ R10×10 matrix can be calculated as
follows:

Σl,ρ,rxy,c′ = JΣm,k,rxy,cJ
T ∈ R10×10 (15)

J =


∂l
∂m 02×2 02×3
∂ρ
∂m 03×2 03×3
02×5 I2×2 02×3
∂c′

∂m
∂c′

∂rxy

∂c′

∂c

 ∈ R13×10

If b=circle, the bound is set as dc=max(l+, l−) and the
propagated Σdc,rxy,c′ ∈ R6×6 covariance can be calculated
as follows:

Σdc,rxy,c′ = JΣl,ρ,rxy,c′JTR6×6 (16)

J =

 ∂dc

∂l 01×3 01×2 01×3
02×2 02×3 I2×2 02×3
03×2 03×3 03×2 I3×3

 ∈ R6×10

Similarly if b∈{ellipse, aarect, conv quad}, with a boundary
vector d, the propagated Σd,r,c′ ∈ R(nd+6)×(nd+6) covari-
ance matrix can be calculated as follows:

Σd,r,c′ = JΣl,ρ,rxy,c′JT ∈ R(nd+6)×(nd+6) (17)

J =

 ∂d
∂l 0nd×3 0nd×2 0nd×3

03×2
∂r
∂ρ

∂r
∂rxy

03×3

03×2 03×3 03×2 I3×3

 ∈ R(nd+6)×10

This concludes the first order error propagation from the
point samples to the patch parameters for all the ten patch
types. More details can be found in the implementation of
the propagation in [21]. We now present the uncertainty
evaluation metrics for the propagated covariances and some
experimental results.

IV. UNCERTAINTY METRICS

To quantitatively evaluate the magnitude of the propagated
Gaussian uncertainty, we define a set of distance metrics.
Given that the propagated covariance matrix is in the space of
the geometrically meaningful patch parameters, i.e. rotation,
translation, and boundary sizes/angles, the introduced metrics
are defined in each of these spaces. Using these metrics,
we run validation experiments on point cloud data that are
generated by simulated or real range sensors. In the former
case we use the data ground truth for evaluation, whereas
in the latter one we analyze the metrics on data from a
real curved rocky surface. These metrics provide quantitative
uncertainty measures that can be further used for risk contact
planning analysis.
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Fig. 5. All the uncertainty metrics (y-axis) for an elliptic paraboloid, from
different frustum x, y, and z positions (x-axis).

A. Multivariate Gaussian Distribution Metrics

To analyze the uncertainty after the patch fitting and the
uncertainty propagation, we use the estimated vector of
parameters and the propagated covariance matrix. Assuming
multivariate normal (Gaussian) distribution that follows the
propagated patch covariance, we randomly sample a set nv
of parameter vectors, each one representing a sampled patch.
In this way we can analyze the distribution of every (set of)
parameter(s) under the propagated uncertainty.
We first evaluate the rotation uncertainty, based on two
distance metrics that were introduced in [22]. The Deviation
from the Identity Matrix (Φ5) metric is defined as follows.
Given the rotation matrix Rp ∈ SO(3) of the fitted patch and
the corresponding Rs ∈ SO(3) for the sampled patch:

Φ5(Rp,Rs) =
∥∥I− RpRTs ∥∥2 (18)

Φ5 : SO(3)× SO(3)→ R+ ∈ [0, 2].

This metric is a distance measure of the angle between two
rigid body displacements and takes values between 0 and 2.
It is equivalent to: cos−1(((trace(RTpRs) − 1)/2). Similarly



surface bound parameters DoF Φd (m) Φk (m−1) Φ5 (rad) Φ6 (rad) Φt (m)
intrin. extrin. µ±σ µ±σ µ±σ µ±σ µ±σ

ell parab ellipse de, k r, c 10 0.012 ± (4 · 10−5) 0.019 ± (1 · 10−4) 0.005 ± (1 · 10−5) 0.005 ± (1 · 10−5) 0.003 ± (5 · 10−6)
hyp parab ellipse de, k r, c 10 0.008 ± (2 · 10−5) 0.016 ± (1 · 10−4) 0.001 ± (3 · 10−7) 0.001 ± (3 · 10−7) 0.002 ± (4 · 10−6)
cyl parab aa rect dr,κ r, c 9 0.008 ± (3 · 10−5) 0.031 ± (5 · 10−4) 0.001 ± (3 · 10−7) 0.001 ± (3 · 10−7) 0.004 ± (5 · 10−6)
circ parab circle dc,κ rxy, c 7 0.010 ± (3 · 10−5) 0.002 ± (2 · 10−6) 0.018 ± (2 · 10−4) 0.018 ± (2 · 10−4) (8821 ± 4) ·10−7

plane

ellipse de r, c 8 0.008 ± (2 · 10−5) — 0.003 ± (5 · 10−8) 0.003 ± (5 · 10−8) 0.002 ± (2 · 10−6)
circle dc rxy, c 6 0.008 ± (2 · 10−5) — 0.002 ± (2 · 10−6) 0.002 ± (2 · 10−6) 0.002 ± (1 · 10−5)
aa rect dr r, c 8 0.007 ± (1 · 10−5) — 0.002 ± (3 · 10−6) 0.002 ± (3 · 10−6) 0.003 ± (1 · 10−6)
c quad dq r, c 11 0.010 ± (3 · 10−5) — 0.004 ± (8 · 10−6) 0.004 ± (8 · 10−6) (20 ± 3) ·10−6)

sphere circle dc,κ rxy, c 7 0.005 ± (1 · 10−5) 2 · 10−8 ± (1 · 10−12) 0.025 ± (3 · 10−4) 0.025 ± (3 · 10−4) 0 ± (2 · 10−12)
circ cylind aa rect dr,κ r, c 9 0.006 ± (1 · 10−5) 3 · 10−6 ± (6 · 10−12) 7.59 · 10−9 ± 10−12 7.59 · 10−9 ± 10−12 0.002 ± (2 · 10−6)

TABLE I

the Geodesic on the Unit Sphere (Φ6) metric is defined as:

Φ6(Rp,Rs) =
∥∥log(RpRTs )

∥∥ (19)
Φ6 : SO(3)× SO(3)→ R+ ∈ [0,π].

This metric that takes values between 0 and π is an alterna-
tive form to evaluate the magnitude of the rotation angle.
Note that the relation of these two metrics is defined as
Φ5 = 2sin(Φ6/2) and thus, we notice that for small rotation
values their numerical difference is negligible.
To evaluate the translation (i.e. patch central point), we just
use the Euclidean Distance, i.e. norm, (Φt ∈ R) between
the fitted cp and the sampled cs such that:

Φt =
√

cpcTs . (20)

For the curvatures (Φκ metric) and the boundary (Φd metric)
parameters we perform the same analysis, by calculating the
norm between the fitted and the sampled parameter vectors
of the curvatures and boundaries respectively.
We evaluate the introduced metrics for every sampled patch
and we report their mean and variance, which gives the
uncertainty estimation of each set of parameters. An other
approach for evaluation could be based on the eigendecom-
position of the covariance matrix, as it was presented in [5].
However, the eigenvalues/eigenvectors metrics are usually
used to compare the results between different methods, which
is not the case in this paper.

B. Experimental Results

surface (bound) parameters (k, d)
ell parab (ellipse) k = [−1 − 2]; d = [1.5 1]
hyp parab (ellipse) k = [0.5 − 1]; d = [1.5 1]
cyl parab (aa rect) k = −2; d = [2 0.8]
circ parab (circle) k = −1; d = 1.8

plane (ellipse) d = [1.5 1]
plane (circle) d = 2

plane (aa rect) d = [1.7 2.5]
plane (c quad) d = [2.3 2 1.7 2.3 π/4]
sphere (circle) k = −1/2; d = 1.8

circ cylind (aa rect) k = −1/2; d = [2 1.8]

TABLE II

Having defined the metrics above, we run three experiments
on simulated and real range data. To acquire simulated data
we define manually ten patches of all different types and we
sample a set of equally distributed points on their surfaces
from a particular frustum. In particular, we set the frustum
to point at the center of each patch in distance (-1,-1,6). The

patches are aligned with the world axes, while their center is
at the world origin. Their ground truth intrinsic parameters
are described in Table II (rotation and translation is implied
given their position in the world frame). For each patch,
we sample a set of 3D points and we perturb them using
Gaussian noise that follows the covariance matrix that is
specified with the process that was presented in the previous
section.
In the first experiment, we run the fitting process on
simulated sample points for each patch type of Table II,
propagating at the same time the uncertainty. Using the
output covariance matrix, we sample nv=104 set of patches,
assuming multivariate normal distribution. In Table I we
report the distance metric results (mean and variance over
all the patch samples) for all the patch types. We notice that
for the boundary parameters (Φd) all the patches have the
same range of uncertainty, i.e. between 5 − 12mm, while
the variance is negligible (in the order of 10−5). More
variation in the range of the results exists for the curvature
metric (Φk). While we see that elliptic, hyperbolic, and
cylindric paraboloids (2 principle curvatures) appear to have
an average uncertainty of 22(m−1), the circular paraboloid (1
curvature) has smaller uncertainty by one order of magnitude,
while the sphere and circular cylinder (1 curvature) have
negligible uncertainty. Moving to the extrinsic parameters,
we notice that the uncertainty of the rotation angle (Φ5,6) is
of the same order for most of the patches, except the circular
paraboloid (one order higher) and the circular cylinder, which
is almost zero. From the other side, the uncertainty in the
position (Φt) is in the order of 10−3 for all the patches,
except for the circular paraboloid and the sphere that are
almost zero. All these results, which are an experimental
analysis of the propagated patch uncertainty, can be used to
weigh our confidence towards some patch types over others.
For instance, it seems better to pick a spherical patch contact
than a circular paraboloid one, since it appears to be more
certain.
In the second experiment, we run the same process as above
for the elliptic paraboloid, by tweaking the position of the
frustum. We let its z distance from the patch to move between
3m and 6.5m and its x and y distance between -3m and
3m each, while we let the frustum always point to the
center of the patch. We report the results of the metrics in
Fig. 5. In the first plot, we can see that when the frustum
moves away from the patch the values of the metrics are



avg
Φ̄d 0.000047
Φ̄k 0.027704
Φ̄5 0.000874
Φ̄6 0.000874
Φ̄t 0.000003

Fig. 6. 150 patches fitted to real range samples from a rocky environment.

increasing, which is very reasonable since the sample points
have a bigger uncertainty in the measurement rays direction
and this propagates accordingly to the patch parameters.
More interestingly, it appears that the uncertainty in the
curvature increases more radically than the others, while the
smallest is always the boundary uncertainty. Similarly, when
the angle between the frustum and the patch is changing
the uncertainty appears to be stable, until an extreme is
reached, where the patch is sampled from the side. Then
the uncertainty increases and a lot of spikes appear in the
metrics. This is also reasonable given that from the side we
loose most of the geometric properties of a patch.
Last but not least, we run the same experiments for a real
rock at 1.2m away from a Kinect range sensor. We fit 150
patches and we report the metric results in Fig. 6. We verify
the fact that the biggest uncertainty appears in the curvature
(Φk), while the rest and especially the uncertainty of the
position (Φt) and boundary (Φd) are much smaller. Note
that since the environment is continuous and the patches are
closer to the sensor than those studied in simulation, we have
smaller uncertainty values than in Table II.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we introduce a Gaussian modeling of uncer-
tainty for bounded curved patches that fit to noisy range
data. Moreover, we describe in detail the uncertainty propa-
gation from the point samples to the fitted patch parameters,
expressed as a covariance matrix. We evaluate the magnitude
of uncertainty through a set of metrics in simulated and
real data. The curved contact patches have been already
used for locomotion and manipulation purposes on three
different humanoid robots, i.e. the WALK-MAN [17], the
COMAN [18], and the RPBP [16]. We are in the process
of integrating the patch uncertainty propagation into our
affordance interface [23], for a contact risk analysis between
these robots and the environment. Moreover, we plan for an
extensive uncertainty evaluation on real data, while ground
truth sample points can be extracted from more accurate
sensors. We also envision the patch uncertainty propagation
to lead us to a patch-based SLAM system similar to [2]
and a Kalman-based patch fusion, using both exteroception
and proprioception, to improve the uncertainty of the contact
patches over time.
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