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Learning Needle Pick-and-Place Without
Expert Demonstrations

Rokas Bendikas , Valerio Modugno , Member, IEEE, Dimitrios Kanoulas , Member, IEEE,
Francisco Vasconcelos , and Danail Stoyanov , Senior Member, IEEE

Abstract—We introduce a novel approach for learning a com-
plex multi-stage needle pick-and-place manipulation task for sur-
gical applications using Reinforcement Learning without expert
demonstrations or explicit curriculum. The proposed method is
based on a recursive decomposition of the original task into a
sequence of sub-tasks with increasing complexity and utilizes an
actor-critic algorithm with deterministic policy output. In this
work, exploratory bottlenecks have been used by a human expert
as convenient boundary points for partitioning complex tasks into
simpler subunits. Our method has successfully learnt a policy
for the needle pick-and-place task, whereas the state-of-the-art
TD3+HER method is unable to achieve success without the help of
expert demonstrations. Comparison results show that our method
achieves the highest performance with a 91% average success rate.

Index Terms—Surgical robotics, autonomous agents,
reinforcement learning, transfer learning.

I. INTRODUCTION

END-TO-END control policies obtained via Reinforcement
Learning (RL) methods are becoming an emerging al-

ternative to traditional robot control approaches [1], [2]. Such
control policy learning methods are well suited for short-horizon
problems containing smooth state spaces and continuous reward
functions, that can be effectively explored by an agent. Never-
theless, robotic manipulation settings often expect behaviours
that lead to very specific goals, such as picking and placing an
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Fig. 1. Example of a sequential multi-stage manipulation required for a wound
suturing procedure. It contains three steps: (a) Needle grasping, (b) Needle
insertion into the tissue using Patient Side Manipulator, (c) Needle regrasping.

object at a desired location or inserting a peg in a hole [3]. While
sparse reward functions describe such environments in a more
natural way, they make learning much more challenging [4].

Learnt control policies can prove especially beneficial in
addressing surgical manipulation problems. This is due to their
ability to overcome typical obstacles that arise when using
conventional non-learning approaches. Learnt methods often
reflect much higher performance speed, which is essential when
working in dynamic surgical environments [5]. Further, they
have the ability to generalize and adapt their actions in real-time
based on changing environmental conditions which are key
toward the implementation of fully autonomous systems [6].
Therefore, learned control policies have the potential to en-
hance the effectiveness of surgical needle manipulation tasks,
ultimately improving patient outcomes.

In the context of surgical needle manipulation, it can be
very complex to learn such policy due to a range of problems,
associated with the nature of the clinical setting. Such tasks often
contain a multi-stage problem structure, where the execution
of each stage has to be in the correct order [7]. For example,
suturing tissue during robotic surgery to achieve anastomosis
requires needle grasping, insertion, and needle regrasping [8],
as shown in Fig. 1. Failing one of the stages often requires
modifying the structure of the task. Furthermore, needle manipu-
lation procedures require extremely accurate and precise control
throughout the operation. Intuitively, grasping a needle is much
more difficult than grasping a larger object, due to its size and
geometry, requiring a very precise grasping policy. Furthermore,
the material properties of the needle make it hard to grasp, as
smooth metallic surface has very reduced frictional properties.
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The sequential multi-stage structure of such tasks, augmented
with strict grasping requirements, introduces bottleneck regions
that limit the capability of the learner to complete each subtask
in the sequence. Following the definition introduced in [9],
bottlenecks are regions in the state space always traversed
by trajectories that solve the desired task. In the context of
multi-stage sequential manipulation and especially for surgi-
cal applications, these regions can become very narrow, hence
hindering the capability of the learner to solve the desired task.
Here, we will refer to them as exploratory bottlenecks to stress
their role as limiting factors in learning an effective control
policy.

Recently, benchmarks have emerged, each aiming to solve a
sub-part of a bigger surgical procedure. NeedlePickAndPlace is
a common surgery-related benchmark, where the agent has to
pick up a needle and place it in a different location. The task
is crucial for solving autonomous suturing and thus, is greatly
studied in the surgical robotics community [10], [11], [12].

In this letter, we propose a new framework for learning
NeedlePickAndPlace task, without reward shaping, demonstra-
tions, or the explicit definition of a curriculum. We break the
task down into two sequential sub-tasks that encapsulate each
other recursively. Defining each subtask as a combination of all
the previous ones introduces a methodological difference with
respect to classical approaches, such as Transfer Learning (TL)
or Curriculum Learning (CL). In these methods, each subtask is
learned in isolation and, successively, the acquired knowledge
is transferred by exploiting specific similarity metrics among
sub-problems [13].

We utilize a Patient Side Manipulator (PSM) to perform
the manipulation task. PSM is a secondary component of a
daVinci Research Kit (dVRK), constrained by a fulcrum point
invariant to the joint configuration, i.e., a Remote Center of Mo-
tion (RCM), thus allowing to perform laparoscopic procedures
[14], [15].

A. Contributions

In this work, we propose a novel method for learning the
NeedlePickAndPlace tasks without using expert demonstration
or explicit CL. To our knowledge, our approach has not been
previously proposed in the surgical robotic control domain,
and it achieves state-of-the-art performance. Summarizing our
contributions, we introduce:

1) A learnt control policy that is able to perform a needle
pick-and-place task using a Patient Side Manipulator.

2) A task restructuring and goal definition technique via
implicit CL.

3) A novel approach to preload a replay buffer with partially
completed trajectories that are bootstrapped from a prior
actor.

4) A composite actor loss that leverages the knowledge from
the prior critic using the Q-function transfer method.

II. RELATED WORK

Automation of surgical robotics is an emerging area of re-
search, that has gained significant attention in recent years [16].
Autonomous surgical needle manipulation is a sub-area of the

field, that aims to develop advanced robotic systems capable
of manipulating surgical needles with a high level of precision
and accuracy, without requiring direct human intervention. [17],
[18], [19], [20]. Such tasks often contain a multi-stage structure
and are extremely hard to learn [10]. Nevertheless, the ability to
accurately and precisely manipulate surgical needles is a critical
step in various surgical procedures, and the development of
autonomous systems that can perform this task has the potential
to revolutionize the field of minimally invasive surgery [15].
Several researchers have explored different methods for au-
tonomous surgical needle manipulation, including vision-based
approaches [6], non-learning approaches [21], [22] as well as
learning-based approaches [23].

Non-learning methods often exhibit higher operational ac-
curacy, but lack performance speed [12], [24], due to the
resource-intense path-planning algorithms. On the other hand,
the state-of-art learning-based approaches employ the Learning
from Demonstrations (LfD) paradigm, where the agents try to
reproduce demonstrations from an expert [5], [6], [17]. Whilst
LfD approaches offer great sample efficiency, the required
data collection can be cumbersome. In the context of surgical
robotics, this is also extremely resource-expensive, as generating
good-quality demonstrations may require a trained surgeon or
may vary across different surgeons.

Hierarchical Reinforcement Learning (HRL) is an effective
learning paradigm for multi-stage tasks. However, it has not
been applied in surgical settings. In [25], the authors describe
policy tree approaches, a group of HRL methods consisting of
two stages: subtask subdivision and optimal blending policy
learning. HRL requires a set of pretrained policies to solve
each subtask prior to learning the global policy. This reliance
on pre-learned subtask policies can limit the optimality and
adaptability of the final hierarchical policy. Our approach differs
from policy tree HRL methods in that it uses a single end-to-end
neural network for the final policy, whereas policy tree methods
have multiple networks. This reduces memory footprint during
operation, as all networks do not need to be stored in memory
simultaneously.

Curriculum Learning (CL) is a widely used technique for
learning goal-conditioned tasks with a sparse reward scheme.
CL involves gradually increasing the complexity of the agent’s
experiences during the learning process, allowing it to learn
simpler behaviors before moving on to harder ones [26]. CL
methods can be classified as either Explicit or Implicit. Explicit
CL requires the manual definition of an increasing difficulty
strategy for the task, while Implicit CL methods allow the
curriculum to emerge as a side effect of the training strategy [27].

In the field of robotics, Explicit CL is commonly used to
define an increasing difficulty in the objective or operational
environment [28], [29], [30]. This approach allows for better
task learning, but it requires the manual definition of the entire
training curriculum. In contrast, our method only requires the
manual definition of an exploratory bottleneck.

Hindsight Experience Replay (HER) is a popular example of
an Implicit curriculum learning method used in robotics [31].
HER assumes that easier-to-reach states are encountered first
and can be used to gain knowledge from unsuccessful episodes.
To accomplish this, HER reassigns the desired goal of each
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episode to be one of the goals that were achieved during
that episode. This allows the agent to learn from its un-
successful experiences and as much as from the successful
ones.

In our approach, we leverage an HER replay buffer to improve
the agent’s learning, but we do not explicitly generate a curricu-
lum. Instead, a natural curriculum emerges from the recursive
formulation of each subtask. As such, according to the classifi-
cation introduced in [27], our proposed method falls under the
Implicit CL category, where a CL technique is employed without
explicitly defining a curriculum.

Our work is related to the Policy Distillation method [32],
which allows the transfer of knowledge from multiple experts
to a single agent. This technique can also compress the agent’s
capabilities while maintaining its performance. In our approach,
we employ a form of Policy Distillation by transferring the
combined knowledge of all previous subtasks to the next policy.
This results in a new distilled policy that can solve all previous
subtasks and any new ones that are added to extend the sequence.
Additionally, since we always retrain the agent on the entire
sequence of subtasks whenever a new one is added, we avoid
the issue of catastrophic forgetting [33].

Transferring knowledge between policies necessitates em-
ploying a Transfer Learning (TL) strategy [34]. In our approach,
we use a combination of Q-function [35] and replay buffer
transfer. To transfer the replay buffer, we preload it with the
transitions collected while executing the previous sub-task actor.
Additionally, we achieve Q-function transfer by employing the
previous sub-task critic to guide the currently learning actor.

III. METHODS

A. Background

RL problems are formulated as Markov Decision Processes
(MDP), defined by a tupleM = (S,A, P, r, γ). In this formula-
tion, S is the state space, A is the action space, P is the transition
probability, r is the immediate reward function, and γ is the
discount factor. TD3 is an off-policy RL algorithm that learns
a deterministic policy by back-propagating the gradient signal
through the critic network to the actor network directly [36]. The
algorithm contains two neural networks: Actor and Critic, that
are trained iteratively.

The critic network is used to approximate the Q-function by
learning a mapping S× A→ R, parameterized by φ. The Q-
function provides an agnostic measure of the state st quality
when performing an action at from that state. The measure is
expressed as the expected future reward, starting from that state
and operating under policy π, and defined as:

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkrt+k+1|st = s, at = a

]
(1)

In (1), st is the current state, and at is an action that is taken
from st and Eπ is the expected weighted total reward, obtained
using policyπ, starting from the state st and taking the first action
at. The loss of the critic is defined using temporal-difference
approximation, minimizing the difference between Q-value at
timestep t and the sum of Q-value at st+1 and instantaneous

reward rt with respect to φ:

LQ(φ,D) = E
(st,at,r,st+1,d)∼D

[
(Qφ(st, at)− T )2

]
(2)

Where the Target Q-value approximation (T) is defined as:

T = (r + γ(1− d)Qφ(st+1, πθ(st+1)))

In (2), a replay bufferD is used to sample experiences in tuples
that contain a current state representation st, an action at, an
instantaneous reward r, the next state representation st+1 and an
episode termination indicator d. The actor-network represents a
learnt policy πθ that performs a mapping S→ A, parameterized
by θ. An optimal policy π∗ provides actions that maximize the
total episode reward R. Therefore, the loss function of the actor-
network is set to maximize the Q-value with respect to θ by
encouraging the actor-network πθ(s) to produce actions, that
lead the agent to states with higher Q-values, such as:

Lπ(θ,D) = E
s∼D

[(Qφ(s, πθ(s)))] (3)

B. Task Decomposition

In this work, we focus on solving a complex multi-stage
manipulation task that consists of picking and placing a small
needle to a designated location and which we will call from now
on for simplicity NeedlePickAndPlace.

The NeedlePickAndPlace task cannot be learnt directly via
random exploration, as the trajectory goal is located beyond an
exploratory bottleneck. This bottleneck is located at the instance
of needle grasping and is caused because only a very narrow set
of actions can be performed in order to cross it. Furthermore,
state representations just before and after the grasping instance
are extremely similar, making it difficult for an agent to reason
about the grasping status.

In our method, we introduce an intermediate goal that allows
learning the overall policy by implicitly increasing the complex-
ity of the curriculum. We first split the NeedlePickAndPlace
task into 3 distinct manipulation phases: Reaching, Grasping,
and Placing. In this formulation, the second task contains the
exploratory bottleneck, however, it also requires the shortest
manipulation trajectory to complete. We then define a two sub-
task system, defining a two-level curriculum, each containing
a trajectory goal. The first sub-task requires an agent to reach
the needle grasping point and has a goal defined at the needle
grasping point. The second sub-task requires the completion of
all three stages and has a goal defined at the expected placing
position. We do not explicitly learn the grasping phase, since
we use it to isolate the bottleneck in the shortest possible ma-
nipulation trajectory segment. Nevertheless, grasping is learnt
implicitly when learning to complete the manipulation task.

Intuitively, both tasks are strongly related, and manipulation
trajectories that are performed in the first sub-task provide a
partial completion of the second sub-task. Therefore, such de-
composition induces an implicit curriculum structure, allowing
to learn the shorter manipulation task before learning the longer
one. Our method is presented in Fig. 2.

Authorized licensed use limited to: University College London. Downloaded on August 23,2023 at 20:31:46 UTC from IEEE Xplore.  Restrictions apply. 



BENDIKAS et al.: LEARNING NEEDLE PICK-AND-PLACE WITHOUT EXPERT DEMONSTRATIONS 3329

Fig. 2. Semantic decomposition of NeedlePickAndPlace task: (a) The overall task is divided into three phases: Reaching, Grasping, and Placing; (b) Grasping
stage is the exploratory bottleneck, therefore the set of actions that allow to cross it gets reduced the closer an agent gets to the bottleneck; (c) The complete task
is refactored into NeedleReach and NeedlePlace sub-tasks, where the latter contains a partial expected trajectory of the former; (d) Summary of the task definition
structure.

Fig. 3. Complete model pipeline, describing the data processing operations. The data, containing state representations (s), actions (a), desired goals 1 (dg1),
desired goals 2 (dg2), and achieved goals (ag) are collected from the simulator one episode at a time and stored in a replay buffer D. A number of episodes, equal
to batch size B, is sampled from the buffer and a single step is sampled from each episode, uniformly. Hindsight Experience Replay (HER) sampling scheme is
used to re-sample the desired goals of the selected samples, forming a batch of data. NeedleReach models employ the inputs conditioned on desired goal 1, whereas
NeedlePlace models employ inputs, conditioned on the desired goal 2.

C. State and Reward Spaces

Our method employs a composite state space representation.
We condition the task-invariant scene observation st with a
task-dependent desired goal dgn, that is to be achieved in the
nth task. Such a scheme allows for an easy state representation

generation, that provides intra-task compatibility support when
using our method. Furthermore, the state representation is nor-
malized before feeding the data to the neural network. We use
a custom input normalization layer, that collects and updates
running mean and standard deviation measures during training.
These measures are then used during the inference passes.
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Furthermore, both sub-tasks are trained using sparse reward
schemes. Any action results in a reward of −1, and only a
transition that leads to a successful episode obtains 0 reward.
The success conditions are explained in section III-E.

D. Learning the Policy

The policy for NeedlePickAndPlace task is learnt in two
training stages, utilizing both sub-task as a curriculum with
increasing difficulty. During the first stage, we train the agent
from scratch using a vanilla TD3 + HER algorithm for the
NeedleReach task, with the goal defined at the needle grasping
point. The agent is able to learn such policy via random ex-
ploration due to goal resampling, facilitated by the use of HER
replay buffer.

During the second stage, we are training the agent to com-
plete the full NeedlePickAndPlace with the goal defined in the
placing location. We further use the agent trained for the first
sub-task to leverage a useful prior, allowing to overcome the
exploratory bottleneck. In order to achieve a successful transfer,
the prior agent must have converged. Using an agent that has not
converged to successfully complete the NeedleReach task will
lead to complete failure in learning NeedlePickAndPlace task.
We determined empirically the convergence point of the prior to
happen at 500 k timesteps, achieving 94% success rate during
evaluation, as illustrated in Fig. 4.

Before the training starts, we preload a newly initialized
HER buffer with partially completed trajectories, provided by
the NeedleReach agent. This ensures that the actor and critic
networks of the second sub-task are immediately exposed to tra-
jectories that they are expected to perform. Further, pre-trained
actor occasionally grasps the needle and moves it to a different
location due to uncertainty of the correct actions after reaching
is completed and added exploratory noise. Such trajectories
provide a direct learning signal after HER goal resampling is
applied.

Furthermore, we redefine the NeedlePlace actor loss formula-
tion, allowing to exploit the NeedleReach critic knowledge when
learning NeedlePlace task. This is accomplished by obtaining
a compound loss for the NeedlePlace actor, generated by both
NeedlePlace and NeedleReach critics. Therefore, we update the
actor loss to maximize the combination of both critics with
respect to θ, as:

Lπ(ε, θ,D) = E
s∼D

[ (1− ε) C2 + ε C1 ] (4)

C1 = Qn
φ′ (s

n, πθ(s))

C2 = Qn+1
φ

(
sn+1, πθ(s)

)

In (4), ε is a linearly decaying parameter, and it decays from
1 to 0 as the training of the second stage progresses. Values
sn and sn+1 are state representation for the NeedleReach and
NeedlePlace task, respectively. Lastly, C1 and C2 represent
outputs of the critics of each task, parameterized by φ and φ′.
The pseudocode of the algorithm is presented in Algorithm 1.

Algorithm 1: Training Policy for Sub-Task n+ 1 Via Prior
n.

Input: Trained prior actor An and critic Qn, initialised
environment Env

Output: Initialise HER buffer D, current agent actor An+1
θ ,

critic Qn+1
φ and target critic Qn+1

target

While Preloading D do
episode← Env,An(sn)
Append episode to D

end while
while training do

episode← Env,An+1(sn+1)
Append episode to D
batch ∼ D
r ← Env.get_rewards(batch)
d← Env.get_dones(batch)
T ← r + γ(1− d)Qn+1

target(s
n+1
t+1 , A

n+1(sn+1
t+1 ))

LQ(φ, batch) = E
batch

[(Qn+1
φ (sn+1

t , a)− T )2]

Qn+1
φ ← Qn+1

φ +∇φLQ

if policy update step then
C1 ← Qn(snt , Aθ(s

n+1
t ))

C2 ← Qn+1
φ (sn+1

t , Aθ(s
n+1
t ))

LA(θ, batch, ε) = E
batch

[(1− ε)C2 + εC1]

An+1
θ ← An+1

θ −∇θLA

end if
Qn+1

target = (1− γ)Qn+1
target + γQn+1

φ

end while

E. Environment Setting

We perform the training of both sub-task in a modified SurRoL
training environment [10]. SurRoL employs a physical interac-
tion and friction-based grasping approach called “interact”, re-
ducing the reality gap between the simulation and the real world.
Both sub-tasks contain two objects of importance: a PSM and a
needle that is placed on a surgical tray. The PSM is initialized
so that the End-Effector tip pose is [(2.5, 0.25, 3.6), (0, pi

2 , π)]
when an episode starts. The needle is randomly sampled on the
tray with a deviation of 5 cm from the tray centre in parallel to
the tray surface. Furthermore, its yaw angle is randomly set in
the range [−π

2 ,
π
2 ].

We further define the state representation using the data pro-
vided by the environment. The simulated environment returns a
raw state representation, containing three contextual objects: a
task-invariant scene observation, an achieved goal, and a list of
desired goals. The scene observation contains robot and needle
pose information, ensuring a fully-observable domain and is
shared between both sub-tasks.

For the NeedleReach task, the achieved goal is defined to
be the end-effector tip position and the desired goal contains
the needle body central point position. To complete the episode
successfully, the L1 norm between the achieved goal and desired
goal has to be below 4 mm. The task has a maximum episode
length of 50 steps. For the NeedlePlace task, the achieved goal
is defined to be the needle body central point position and the
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desired goal list contains two goals: the needle body central point
position and a randomly sampled position in the operational
space, where the object has to be placed. To complete the
episode successfully, the L1 norm between the achieved goal
and the second desired goal has to be below 2.5 cm. The task
has a maximum episode length of 100 steps. Both settings are
presented in Fig. 3.

F. Control Setting

We utilize a model of the Da Vinci Research Kit (dVRK)
surgical robotic system [14] for minimally invasive laparoscopy.
We employ a single PSM arm, containing 7 degrees of freedom.
The dVRK system comes with a quality kinematics framework
included through the CIST library, therefore allowing for effec-
tive control through high-level control inputs.

We utilize delta-pose method to control the manipulator. Delta
pose method refers to a positional control approach, where
spatial change values of the End-Effector Cartesian position
and orientation are provided by the agent. In our setting, these
values are bounded in the range of [−0.5, 0.5]. The first three
control values represented delta End-Effector (EE) position in
the world coordinate frame, allowing for the gripper translations
in the operational space. Furthermore, a single delta-yaw value
is used to achieve a gripper tip rotation, which allows fitting
the curvature of the manipulated object. Lastly, a single-valued
gripper action is used, where a value ≥ 0.0 represents an open
gripper state.

IV. TRAINING AND RESULTS

A. Comparison With the Baseline

We compared our agent’s performance against four base-
line methods: TD3 with HER replay buffer (HER), TD3 with
HER replay buffer and Behavioral Cloning (BC) loss (HER
+ BC), TD3 with HER replay buffer that was preloaded with
expert demonstrations (HER+DEMO) and TD3 with HER re-
play buffer that was preloaded with expert demonstrations and
Behavioral Cloning (BC) loss (HER + DEMO + BC). The first
two baselines showed that pure exploration is not enough to learn
NeedlePickAndPlace task from scratch, even with BC loss being
applied directly to the actor. Whereas the latter two both employ
expert demonstrations and are the current state-of-art solution
for learning end-to-end policy for NeedlePickAndPlace task, as
demonstrated by [10]. Our method required also obtaining a
prior agent, that was trained for 500 k time steps, preloading
10 k time steps of experience collected via random exploration.

We trained all five models for 2 million time steps whilst main-
taining the hyperparameters as similar to each other as possible
in order to allow for a reasonable comparison. All five instances
were preloaded with 50 k time steps of transitions, coming
from the random exploration, path planner, and prior actor for
HER and HER+BC, HER+DEMO and HER+DEMO+BC, and
our methods respectively. Then each agent was trained for the
remaining 1.95 million time steps, using ADAM optimiser with
a learning rate of 1e−4 and batch size of 2048 samples. For BC

Fig. 4. (a) Success rate of our method, versus baselines; (b) Episode length of
our method, versus baseline; (c) Ablation study: the success rate of our complete
method, versus only buffer preloading with partially correct trajectories, versus
only critic transfer; (d) Prior agent training progress. The bold line represents
the average performance values, whereas the shaded boundary demonstrates the
95% confidence interval.
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methods, we implemented a separate replay buffer, that was pre-
loaded with the same expert demons as the main buffer. During
each policy training step, an expert demonstration state-action
pairs (s∗, a∗)were sampled from the buffer and the actor training
signal was obtained by combining the critic loss as well as a BC
loss, defined as ||a∗ − π(s∗)||2.

Our policy achieved a peak average success rate of
91.1% across five random seeds. Therefore, it outper-
formed HER+DEMO and HER+DEMO+BC approaches, which
achieved 87.4% and 88.2% success rate over the same five
seeds. The HER and HER+BC agents did not manage to learn
the policy, thus achieving the success rate of 0%. However,
HER+DEMO method outperformed our agent in the average
episode length comparison, completing an episode using 42.26
steps on average. Our agent performed significantly slower,
requiring 50 steps on average to complete an episode. Never-
theless, our method reflected a much more stable episode length
convergence. We evaluated each agent after every 100 k time
steps of training to provide a better insight into the training
performance. The results are presented in Fig. 4, parts (a) and
(b). It can be observed that whilst it takes longer to train our
agent, the peak performance is higher at the end of the training.

B. Ablation Study

We further investigated the importance of both method com-
ponents: buffer preloading with NeedleReach actor and Needle-
Place actor guidance using NeedleReach critic. It was deter-
mined that only a combination of both components allows an
agent to learn the desired policy. Buffer preloading alone allows
the agent to learn a suboptimal policy, peaking at a 42% success
rate. We noticed that the agent learns to reach the object quite
quickly. However, the policy starts diverging shortly after, due
to many unstable grasps being loaded to the buffer, thus making
policy assign equal rewards for (unstably) grasped needle states
and random states. On the other hand, actor guidance does not
manage to learn a successful policy in isolation. By visually
inspecting the training process, we observed that the actor is
being guided in the right direction. However, the small scale of
the object and its physically rich interaction nature prevents the
agent from grasping the needle successfully, thus preventing the
agent from obtaining any reward. The ablated performance is
presented in Fig. 4, part (c).

V. CONCLUSION

In this letter, we present a novel learning approach, that al-
lows learning a multi-stage NeedlePickAndPlace manipulation
task with sparse rewards without using explicit export demon-
strations. Our agent successfully outperformed a HER+DEMO
trained agent, achieving a state-of-the-art performance of 91%
success rate.

Whilst our method was not tested in a real-world setting, pre-
vious work has shown that such transfer should be possible [5],
[10]. SurRoL platform interface is directly compatible with
dVRK control inputs, as explained in [10] by following the trans-
fer protocol defined in [37]. It was shown that object of interest
based state-space representation can be transferred by placing

objects of interest in predetermined poses in World Cartesian
coordinates. On the other hand, visual tracking methods have
also been successful and used in determining accurate tool poses
in the World Coordinate Frame [5], [38]. Such methods can be
applied to estimate the poses of the objects of interest, allowing
to transfer our policy directly to the real robot. Nevertheless,
there is a performance drop to be expected between the sim-
ulation and the real world due to the noise induced by a state
estimator [5].

Our method allows learning end-to-end control policy with-
out expert demonstrated trajectories. Nevertheless, it still re-
quires performing a manual task decomposition by a human
entity. Furthermore, the person has to be familiar with the
mechanics of the problem, therefore, they might be referred
to as an expert. Nevertheless, the expertise required to break
down the task is significantly reduced, as it only requires a
strong understanding of the manipulation process, rather than
specific domain knowledge and surgical dexterity. Furthermore,
such decomposition raises a one-off cost, that is temporar-
ily much cheaper than performing a number of trajectories
manually.

Further, adaptations of the method can potentially cause nega-
tive TL issues. Our problem setting meets the basic assumptions
of TL: 1) domain similarity, 2) data sampled from both tasks
comes from the same distribution, and 3) an appropriate model
can be fit to both domains [39]. This is further experimentally
confirmed by a successive transfer. However, changing the prob-
lem setting might break the set of assumptions, making the
method unfeasible for such tasks.

Lastly, our method is also less sample efficient compared
to expert demonstration-based approaches, which means that a
higher number of trajectories needs to be collected compared to
HER+DEMO approach. Our method allows for increasing the
sample efficiency by saving the replay buffer after each stage
and loading it directly for the subsequent training stages since
all the goals are saved simultaneously. Nevertheless, we found
that a freshly initialized buffer for each stage provides less noisy
data and thus more stable training.
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