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Local Navigation Among Movable Obstacles
with Deep Reinforcement Learning

Linghong Yao, Valerio Modugno, Yuanchang Liu, Danail Stoyanov, and Dimitrios Kanoulas

Abstract— Autonomous robots would benefit a lot by gaining
the ability to manipulate their environment to solve path
planning tasks, known as the Navigation Among Movable
Obstacle (NAMO) problem. In this paper, we present a deep
reinforcement learning approach for solving NAMO locally,
near narrow passages. We train parallel agents in physics
simulation using an Advantage Actor-Critic based algorithm
with a multi-modal neural network. We present an online
policy that is able to push obstacles in a non-axial-aligned
fashion, react to unexpected obstacle dynamics in real-time,
and solve the local NAMO problem. Experimental validation
in simulation shows that the presented approach generalises
to unseen NAMO problems in unknown environments. We
further demonstrate the implementation of the policy on a real
quadrupedal robot, showing that the policy can deal with real-
world sensor noises and uncertainties in unseen NAMO tasks.

[. INTRODUCTION

Studied extensively by Mike Stilman [1], the Naviga-
tion Among Movable Obstacle (NAMO) problem tackles
planning problems where obstacles can be manipulated via
pushing, pulling, or lifting to aid a robot’s navigation in
cluttered environments. Just like how humans intuitively
nudge and move furniture out of their way when walking
through a tightly packed room, robots can also become much
more useful if they can manipulate their surroundings to
help them reach their target location. Practical use cases
for NAMO solutions include robots that perform routine
maintenance of factories where idle containers and boxes
may obstruct doorways; personal service robots in house-
holds where rooms are packed with furniture and items; and
industrial inspection robots in underground caves and tunnels
where rocks and debris may block the walkway. In such
environments, the ability to reliably manipulate obstacles will
significantly increase the efficiency of autonomous robots.

However, even simplified versions of the NAMO problem
have been proven to be NP-hard [2], [3]. Past literature
has tackled the NAMO problem using algorithms based on
iterative and recursive methods [4], [5], [6], but usually
with simplifications to the problem setting, such as prior
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Fig. 1. The environment observation is obtained via visual sensors and
preprocessed into the desired state format. The input is fed into a trained
policy network that computes a high-level action output for the robot to
follow in the environment, in order to solve the local NAMO task.

knowledge of the environment, offline planning, and axial-
aligned manipulation. Only a few studies have tackled the
online NAMO problem and considered the implications
of sensor errors and unexpected object dynamics [7], [8].
Furthermore, methods utilizing recursive and iterative search-
based techniques usually result in a computational complex-
ity that is exponential to the number of local obstacles [5],
and the search time in practice can sometimes be too long
when many obstacles are present.

In this paper, we aim to address some of these shortcom-
ings using a deep reinforcement learning approach (Fig. [I).
By utilizing a neural network for policy-based RL algo-
rithms, we develop an online agent that can solve unseen
NAMO tasks without the constraint of axis-aligned pushing,
and is able to handle uncertainties in sensor inputs and
obstacle dynamics. Specifically, we focus on solving key-
hole problemsﬂ near one or two narrow passages. We also
constrain the problem to use only pushing actions, as this
is the most universal manipulation method amongst mobile
robots — pulling and lifting obstacles might need extra robotic
equipment such as arms. Our proposed method is suitable to
be implemented within workflows where global path plan-
ning algorithms such as A* [9] would be unable to resolve
local problems that require NAMO solutions. Therefore, we
formulate the environment in a small region near narrow
passages, with the objective of the robot reaching from one
disjointed space to the other via obstacle manipulation. Such

Defined in [1], keyhole is the problem of moving one or more objects
to connect two disjointed spaces to solve local NAMO tasks.



framing of the problem removes the necessity for the RL
agent to learn how to perform path planning with obstacle
avoidance. The goal of the policy is only to get through the
local narrow passage using obstacle manipulation, such that
reliable path tracking can resume.

We utilize a policy based on Advantage Actor-Critic
algorithm [10], and we use state-of-the-art physics engine
NVIDIA Isaac Gym [11] to simulate and train parallel
agents in obstructed narrow passages. We present results
for both policies trained to solve unseen obstacle positions
in known environments, and unseen obstacle positions in
unknown environments. We further demonstrate real-world
robot experiments conducted on a Unitree Gol quadrupedal
robot to show that the policy is able to handle sensor noises
and real-world obstacle dynamics in practice. The rest of
this paper is organized as follows. In Sec. we discuss
the literature on the NAMO problem, while in Sec. we
state the problem formulation in the reinforcement setting,
and how we implement training in simulation. In Sec.
we present our results both in simulation and with real robot
experiments. Lastly, Sec. |V| concludes the paper and points
to future directions for solving NAMO with RL.

II. RELATED WORK

The complexity of motion planning with movable ob-
stacles was first analyzed by [2], where simplified varia-
tions of NAMO have been proven to be NP-hard. Demaine
et al. [3] further showed that problems involving square
blocks constrained to planar translations are still NP-hard.
Stilman et al. [1] first formulated the navigation among
movable obstacle problem in 2005, and proposed a graph-
based planner that decomposes the global problem into a set
of subclass keyhole problems called LP;, where disjointed
free spaces can be connected by moving a single obstacle.
The search space of NAMO was greatly reduced via this
decomposition and was used to generate a complete solution.
This work was extended in [4], which proposed a planner
that can solve LPj subproblems, where k obstacles need
to be moved independently to connect two disjointed free
spaces. Nieuwenhuisen et al. [6] proposed a method based
on Rapidly-exploring Random Trees (RRT), where the node
expansion process is probabilistic and is adaptively guided
by a heuristic. A probabilistically complete algorithm was
proposed by Berg et al. [12], in which the computation of
robot’s motions is decoupled with the obstacle movements
and the tree-based method finds the sequence of axis-aligned
obstacle movements that connects disjointed spaces between
the robot and the goal position. In recent works, Moghaddam
et al. [5] proposed a recursive algorithm capable of solving
nonlinear and non-monotone problems with axis-aligned
object manipulations, and a quadruped robot applied pushing
actions to free space in [13] via search-based methods.

In the aforementioned approaches, planning is performed
offline with complete prior knowledge of the environment
and known movability of obstacles. The computational com-
plexity of these methods grows exponentially to the number
of obstacles, which is inefficient in practice as the number

TABLE I
COMPARISON TO ONLINE SOTA METHODS

Method  Uncertainties Manipulation Non-Axis- Real-world
aligned

[14] None Push No No

[15] Pos. Mov. Grasp No Yes

[8] Pos. Mov. Kin. Motion Primitives Yes Yes

Ours Pos. Mov. Kin. Push Yes Yes

of obstacles in the scene increases. Wu et al. [14] examined
realistic situations where the robot must navigate through an
unknown environment with unknown object movability. The
robot is constrained to only pushing actions, and the authors
proposed an efficient online method where re-planning is
only performed when new information changes the optimal-
ity of the current plan. Kakiuchi et al. [7] devised an ac-
tion strategy and performed real-world testing on humanoid
robots for unknown environments and unknown object mov-
ability. In Levihn et al. [15], the authors introduced a novel
method based on Hierarchical Reinforcement Learning and
Monte Carlo Tree search and performs planning online with
uncertain sensor information. The proposed method is shown
to have approximately linear computational complexity with
respect to the number of obstacles. Non-axial manipulation
of obstacles is examined in [8] by utilizing a physics-based
reinforcement learning framework to adapt to unexpected
obstacle behaviors such as rotation. Further extensions to
NAMO, such as socially aware obstacle placement, have also
been examined in [16], [17], [18].

In this paper, we propose a Deep Reinforcement Learning
(DRL) approach. There have been numerous recent studies
in which agents trained with DRL have been shown to
generalize to a wide range of tasks in simulation, including
2D arcade games [19], multi-agent collaborative and com-
petitive tasks [20], and navigation tasks [21]. These studies
have shown promising results in agents performing highly
difficult tasks with very little to no prior knowledge about
the tasks. Xia et al. [22] trained vision-based DRL agents in
home settings with interactive objects. The authors presented
agents which can efficiently optimize trade-off between path-
efficiency and object interaction but did not focus specifically
on NAMO tasks where object manipulation is necessary for
agents to reach goal position. To the best of our knowledge,
we are the first to utilize deep reinforcement learning to
solve the NAMO problem. Table [I| compares our method to
other state-of-the-art online NAMO methods. We highlight
that our approach removes the constraint of axis-aligned ma-
nipulation, and imposed positional (Pos.), movement (Mov.),
and kinematics (Kin.) uncertainties in the environment. We
further note that compared to [8], our method runs in
constant time complexity and therefore completes a typical
similar task about five times faster. Furthermore, our method
is capable of solving harder problems such as non-linear
problems, which we will demonstrate in Sec.

The main contributions of this work are:

e We propose a reinforcement learning policy that can
solve local NAMO problems with non-axial-aligned
pushing.



RP,
BV,
ag

7

Linear layer +
RelU +
Layer Norm

Conv Layer +
ReLU +
Batch Norm

Grid colors
Free space

I Robot

B Obstacle
Wall
Goal

RP;_4
BVi—4
at—4

G

Pose vector
242 x1

Occupancy grid Conv Conv
4 x4x32

48 % 48 x1 8x8x16

Fig. 2.

V(st)

Linear
128

concat

[vz, 92]

Linear Linear
128 64

flatten

Linear
128

The presented policy uses a multi-modal neural network to handle both image and vector inputs. The state s¢, shown on the left side of the

diagram, consists of a vector and a grid. The vector is 242 in length, containing information about the agent’s pose, box vertices, previous action, and
goal position. The grid consists of 48 cells semantically labeled. The vector is first passed through a linear block, whilst the grid image is passed forward
via two convolution blocks and a linear block. The outputs of the two streams are concatenated, then passed through two more linear blocks. Finally, the
network diverges via two separate sets of weights to output the value estimate and the action output shown on the right end of the diagram.

o We demonstrate that the proposed policy is able to
generalize to unseen obstacle positions in known envi-
ronments, and has the potential to generalize to unseen
obstacle positions in unknown environments.

o We develop a framework for generating local NAMO
problems to train agents in parallel simulated environ-
ments, which can be used to benchmark future studies.

o Lastly, we show that reliable sim-to-real transfer of the
proposed method is possible, and the policy can handle
sensor noises and uncertain dynamics.

III. METHODS
A. RL Background

We consider a typical episodic reinforcement learning
setting where the agent interacts with the environment over
discrete time steps. At every time step, the agent receives
state s; and samples an action a; from the policy distribution
m(at|s¢; @), where O is the parameter of some function
approximation. The agent then receives the next state s;11
and a scalar reward r;. In policy-based settings, the objective
is to find the parameter @ which maximizes the expected
cumulative return R; = Z;O:O ’yerk with discount factor
v € (0,1].

In Advantage Actor-Critic methods, the algorithm com-
putes both a policy m(a¢|s:;0) and a value function
V(st; w). The value function estimates the expected return
E.[R:|st = s] by following the current policy 7 from s;.
The value function V/, also known as the critic, updates via
the parameter w whilst the policy 7, also known as the actor,
updates via the parameter 6.

We implemented a deep neural network for function
approximation and updated the parameters with stochastic
gradient descent. The parameters are updated using

0 + 0+ aVglogm(as|ss; 0)A(se, ap; w) (D

W W+ ay Vi, V(s w)A(se, ap; w) 2)

where « and «,, represent the learning rate of the policy
and value function, respectively. Note that A(s;,ar;w) =
S Vs 4+ YV (sik; w) — V(s w) computes the n-
step advantage for the state-action pair (s;, a;), where k
determines the number of steps to look ahead.

In practice, the actor and critic parameters € and w share
a large set of weights, as shown in Fig. [2]to help stabilize the
learning. In addition, we add an entropy term Vo H (7(s; 0))
to Eq. (I) and Eq. (Z) as recommended by [10] to help
regularize learning. We also use a clipped surrogate objective
from [23]:

LEEIP () = By [min(r(6) Ay, clip(re(6), 1 — e,1+ )4

where € is a hyper-parameter to be set. Updating policies in
such ways further improves the stability of training.

B. Problem Formulation

In this section, we describe the formulation of the rein-
forcement learning problem. We tackle local NAMO key-
holes where the objective is to connect two disjointed,
adjacent free spaces separated by a set of obstacles. We
define an agent which interacts with the environment over
a set of time steps with continuous action space in forward
velocity v, and angular velocity 0.. The agent receives a
reward r; from the environment at each time step, and the
objective is to maximise the cumulative return )~ Y.

The environment consists of a small local region that
includes a narrow passage and several obstacles near the
passage. We set the goal behind the passage. The episode
ends if the agent either reaches the goal position or if the
maximum episode length is exceeded.

We assume the following upstream inputs are present when
constructing the state of the agent: a semantically labeled,



TABLE I
REWARD GIVEN AT EACH TIME STEP

reward description weight
goal 1 if reach goal, 0 otherwise 10
progress [-1, 1] o< velocity towards goal 1
dist [0, 1]  distance to goal 0.1
wall collision -1 if collision with wall 0.2
box collision -1 if collision with box 0.1
vel effort [—1,0] « v¢arget target velocity — 0.05
rot effort [—1,0] étarget 0.1
vel offset [—1,0] « |vgctual — Vtarget| 0.2
rot offset [—1,0] « |0gctual — Otarget| 0.1
time -1 1

coarse occupancy grid, which can be obtained via LIDAR
or camera sensors and semantic segmentation methods [24];
bounding boxes detection on obstacles, which can be ob-
tained by object detection algorithms; and internal pose data
about the agent’s current state, which can be obtained via
robot’s internal sensors. We assume a degree of sensor noise
from all the inputs. From these upstream inputs, we then
construct the agent state which includes the goal position
G, obstacle vertices BV, robot internal state (pos, vel, rot,
ang vel) RP,, previous action a;, and a semantically labeled
occupancy grid. We include a history of concatenated past
states for RP;, BV}, and a; to provide the agent with some
temporal information, in a similar fashion as [19]. We choose
to include the past 5 frames, as from our experiments this
was proved to provide a good trade-off between performance
and computational cost. The final state is formed by the
occupancy grid and a vector containing data G, RP;_4.,
BV;_4., and a;_4.;, as shown in Fig.

In order to keep the policy practical and generalizable, we
adopt a high-level control strategy to control the robots. We
utilize a unicycle model with two degrees of freedom v, and
0., i.e., linear and angular velocity. This policy can easily
be applied to different robot models, as we demonstrate in
our robot experiments in Sec.

The objective of the agent is to maximize the cumulative
return. The reward given at each time step is described in
Table[lll We give a large reward upon completion of the task,
and no reward if the task is not completed. At each time step,
a small amount of positive reward is given if the agent moves
towards the goal (progress), or is close to the goal (dist). A
small amount of negative reward is also given proportionally
to the effort of the action taken (vel effort, rot effort), any
collision with walls (wall collision), and any contacts from
pushing obstacles (box collision). We also penalize the agent
for inducing large offsets between target and actual actions,
which typically results from collisions with other objects or
abrupt changes to actions (vel offset, rot offset).

C. Algorithm Implementation

We train our agent in simulation using NVIDIA Isaac
Gym, which uses PhysX as the back-end physics engine[11].
A large benefit of using Isaac Gym is that we can train par-
allel agents on a single GPU. Such parallel training greatly
helps policy-based algorithms to produce stable learning with
less training time [10].

Fig. 3. Local NAMO scenes are generated with a set of fixed maps and
random obstacle positions. The task of the agent (grey) is to manipulate
the boxes (yellow) to reach the goal position (green). Maps (a) and (h)
are used for training, representing a variety of different local NAMO
environments including corridor (a,b), mid-doorway (c,d), side doorway
(e.f,i), and diagonal doorway (g,h).

The advantage actor-critic method is implemented with
a multi-modal neural network is designed to fuse two
components of the state space, as illustrated in Fig.
The state includes a vector and grid component that are
normalized to [—1,1]. The vector input is passed through
a linear block consisting of one layer of perceptron with
128 units, ReLU activation, and a normalization layer. The
grid input is passed through two convolutional blocks each
consisting of a convolutional filter, ReLU activation, and
batch normalization. The first block contains 16 filters of
8 x 8, whilst the second block contains 32 filters of 4 x 4.
The output is flattened and passed through a linear block
with 128 units. The two streams are concatenated and passes
through two linear blocks with 128 units and 64 units. The
output is then finally connected to two separate linear layers
outputting the value estimate V(s;) and the action [v, 0],
respectively.

D. Scene Generation and Curriculum Training

In Fig. 3] we show eight different map configurations that
were developed in Isaac Gym. We designed these maps to
cover a wide range of local NAMO settings: narrow corridor
(map a and b), doorway with space to the sides (map ¢ and
d), doorway against a wall (map e, f and ¢), and diagonal
doorways (map g and h).

Each agent is spawned in a pre-defined room with a
dimension around 6 x 6 m?. This is a reasonable setting
for mobile robot sizes of around 0.5 to 1 meter in length to
move through narrow passages that are 1 to 2 meters wide.
An obstruction of obstacles near such passages would make it
difficult for the robot to pass through. The robot and the goal
position are randomly spawned within their own predefined
area, but with a small probability (e.g., 5%) the robot can
also spawn anywhere inside the map, such that the agent has
a finite chance of visiting every position.

We choose boxes of size around 60cm?, and spawn up
to 5 boxes in each room. We choose 5 boxes because it
appropriately fills the room with enough variety, adding more
would overfill the room and make the box position generation
too difficult. Note that if obstacle positions are generated at
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Fig. 4. The reward over policy update steps for both experiments conducted
on a single map and on multiple maps are shown in purple and green,
respectively. The effect of curriculum learning can be observed from sharp
drops of the purple curve as the task becomes harder, whilst this effect is
smoothed out in the multiple map setting as not all maps reach curriculum
at the same time. The single map setting converges to a stable equilibrium,
but the policy trained in multiple map setting often does not reach such
equilibrium, and early stopping is performed.

random, most of the problems would be too easy, i.e. not
requiring any interaction between the agent and the obstacles.
Therefore, obstacle positions are picked randomly with a
higher probability to spawn in difficult positions. Concretely,
each obstacle ¢ has probability Ap; to spawn in any random
location in the room, with random rotation. With probability
A(1—p;) it spawns in pre-defined challenging positions (e.g.
that blockades the narrow passage, or positioned near the
narrow passage) plus some random perturbations. Finally,
with probability 1 — A\ the obstacle does not spawn in the
room, in which case their vertices are represented with zeros
in the input. We typically use p; € [0.2,0.6] for each
box, and we gradually increase the value of A in discrete
increments starting from 0.2. By randomizing the positions
of obstacles, we force the agent to find a solution for new
obstacle positions every time, and thereby learn to reason
about the relationship between different obstacles, such as
which order to push the obstacles.

The parameter A allows us to control how many boxes
spawn and thereby the difficulty of the NAMO problem.
This effectively creates a curriculum training scheme where
we can update A such that the agent receives more difficult
problems as it learns to solve easier ones. We set a threshold
of completion rate at the current difficulty (e.g., 90%). Start-
ing with A = 0.2, we train the agent until its performance
reaches 90% completion rate, and we increase A by 0.2. This
process repeats 4 times until A reaches 1, upon which around
4 to 5 boxes will spawn at the start of the scene every time.
The effect of this curriculum learning scheme over a training
run can be seen in Fig. ]

E. Domain Randomization

Heavy domain randomization is applied to both the state
and the action space in the form of Gaussian white noise.
We anticipate real-world problems to be highly noisy in
both sensor inputs and object dynamics, and a good policy
should be able to robustly handle such noises. By adding
noises to input state space, we simulate sensor noises that
the robot is likely to encounter in the real world, such as

TABLE III
PERFORMANCE OF POLICY WHEN TRAINED ON SINGLE MAP
CONFIGURATION WITH VARYING A

A boxes completion rate time taken boxes pushed
0 0 99.9 6.80 0

02 0.7 98.5 7.13 0.34

04 13 98.3 7.68 0.64

06 2.1 974 8.09 1.00

08 28 94.5 8.14 1.37

1 3.7 91.0 8.69 1.92

temporal fluctuations in estimated obstacle poses and robot
pose. Note that we add noises to the vector state and the
grid state independently, as the real-world sources of these
sensor noises are usually not correlated. We add similar
Gaussian noise to the action outputs of the model, in order
to simulate unexpected robot dynamics. Overall, applying
domain randomization in our training decreases the sim-to-
real gap, and ensures that the policy is stable in the presence
of noisy inputs and unexpected object dynamics, as we will
demonstrate in the next section.

IV. EXPERIMENTS
A. Simulation

In this section, we demonstrate simulated performance of
the trained policy to solve unknown problems both quantita-
tively and qualitatively. We train the policy with two settings,
single room configuration, and multiple room configurations.
In the single room setting we train the agent with random
box positions in the same room (shown in Fig. [5| whilst in
the multiple rooms setting the agent is trained with eight
different room layouts. Our results show that in the single
room configuration, we can train a policy to generalise
to unseen obstacle positions in a known environment with
optimized behaviours and a low failure rate. In the multiple
room setting, we show that a policy can also generalise to
unseen obstacle positions in unseen environments at the cost
of less optimized behaviour.

The following training settings are used for both experi-
ments. The scene generation and randomization protocols are
described in Sec. where we randomize the positions of
the agent, goal, and boxes, train with a curriculum, and apply
domain randomization to the input and output space. We use
ADAM as the optimizer [25], with 12 regularization to help
with stability [26]. We also add gradient clipping to avoid
exploding gradients, which typically occurs when off-policy
learning, function approximation, and value bootstrapping
are all present (deadly triad) [27]. An adaptive learning rate
is utilized based on the KL threshold. We use a horizon
length of 50, and policy update frequency of 20 physics
steps (333ms). The maximum episode length is set to 45
seconds, or 2700 physics steps. We train 4, 000 environments
in parallel with mini-batch of 2,000 samples every update.
Training is conducted using an NVIDIA RTX 3080 GPU for
20,000 policy update steps.

In our first experiment with a single map setting, we train
the policy on the same map (see Fig. [5) but randomize the
initial agent, goal, and obstacle positions. We then evaluate
the network with 1, 000 scenes in the same map configuration
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and find an efficient path through the walkway in both cases.

TABLE IV
COMPARISON BETWEEN POLICY PERFORMANCE ON TRAINING MAPS
AND TEST MAP, WITH A = 0.8

Experiment completion rate time taken (s) boxes pushed
Training (8 maps) 79.8 10.99 1.12
Testing (map i) 54.3 13.05 1.51

but with unseen box positions. We repeat the evaluation six
times by varying the parameter A to increase the number of
boxes in the scene, thereby increasing the difficulty of the
problems.

Fig. B]illustrates some qualitative results of the experiment.
In the top row, we see that the agent is able to push obstacles
along a trajectory in a non-axis-aligned fashion along its
trajectory. In the second row, we highlight that the agent
takes a much more narrow turn at the doorway because the
most efficient way to get through is by nudging both boxes
aside. This is because pushing boxes into the door will cause
them to block the goal (shown in green). We highlight that
the demonstrated behaviours cannot be achieved with the
restriction of axis-aligned pushing, which many past works
require.

The quantitative results of this experiment are shown in
Table [} The rows represent increased difficulty from top
to bottom as A increases. Note that the number of boxes
in the scene is not directly proportional to A\ due to the
random spawning of boxes, as sometimes there are no more
vacancies left for new boxes to spawn. We observe that as the
problem becomes harder with more boxes, the completion
rate decreases often due to the agent being stuck in an
unrecoverable position such as a blocked pathway or blocked
goal position. In the last column of the table we list the
number of mean boxes pushed when the task is completed.
We note that this value is usually only half of the mean
number of boxes in the scene, demonstrating that the agent
only pushes boxes that are necessary for clearing the path.
Overall, the observed agent’s behaviour is stable and robust
in the single map setting. It is able to generalise to unseen
obstacle positioning to find the correct solution in unseen
initial configurations 91% of the time, even in the hardest
problems.

In our second experiment, we train one policy on multiple

Qualitative demonstration of the policy in simulation, trained on single map setting. The agent is able to adapt to different obstacle positioning

maps simultaneously and examine whether or not the trained
policy is able to generalise to unseen environments as well
as unseen obstacle positions. We train the agent on maps a to
h, shown in Fig. 3] and test the agent on 1, 000 environments
with an unseen map (same map shown used in single map
setting). Our results show that the stability of learning is
difficult to maintain in this setting. Despite having utilized
several regularisation techniques, stable convergence of the
policy is still not guaranteed on every run. Fig ] shows that
the policy is unable to reach the same performance as the
single map case. Therefore, we perform early stopping to
pick a policy snapshot that performs best during training.
In the multiple map setting, we notice that the agent learns
strategies that generalise across different problems, namely
the ability to sequentially push obstacles, and the ability to
react in real-time to unexpected dynamics and input noises.
Fig. [6}a shows an example of non-linear sequential pushing,
where the agent must push the left box out of the way
before going pushing the right box through the doorway. We
highlight that the agent is able to optimize this behaviour
by making only small detours along its trajectory, which
would not usually be possible to achieve with axis-aligned
pushing constraints. Fig [6}b highlights the ability of the
agent to recover from an undesirable position. Due to limited
resolution in the input image, it’s often hard for the agent to
precisely localize the doorway and it sometimes runs into the
wall near the doorway, as shown in frame 2. However, when
such expected dynamics occur in the environment, the agent
adopts a strategy of backing out and moving forward again
to get through the passage, shown in frames 3 and 4. Such
behaviour illustrates that a less optimal policy is reached
compared to the single map setting, however, the agent still
displays interesting ways to recover itself from a bad state.
The quantitative results are shown in Table We test
the performance of the agent in known environments (same
eight maps) but unknown obstacle positions, and unknown
environment and unknown obstacle positions. The agent
achieves around 80% completion rate across all eight maps
in the hardest cases and achieves 54% completion rate in an
unseen map. Whilst the completion rate on the unseen envi-
ronment is relatively lower, we believe it still demonstrates
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Qualitative demonstration of the policy in simulation, on multiple map setting. In a) we demonstrate that the agent is able to push obstacles

sequentially whilst making minimal detours to its trajectory and in b) we demonstrate that the agent is able to recover from unexpected dynamics.

the ability of the agent to generalize to unseen environments.
We hypothesise that the performance could be increased
further with higher randomization in the training data (e.g.,
more map configurations), and by repeat experiences on
harder NAMO problems with techniques such as prioritised
experience replay [28].

B. Failure Cases

In the single map setting, most failure cases often involve
the agent pushing the box into an unrecoverable position,
such that the passage is completely blocked. On the other
hand, in the multiple map setting, we see more failure cases.
This often includes agents, taking unnecessary turns, and
sometimes getting stuck in a corner of the wall as seen
in Fig. [ We believe this is caused by a combination of
insufficient feature extraction from a neural network trained
on highly correlated data, and a lack of resolution in the input
image. The former can be improved by increasing the number
of training maps and using experience replay to decorrelate
the data, and the latter can be improved by increasing the
input image dimension.

C. Robot Experiments

In this section, we present our results with a real
quadruped robot. We use a neural network trained in the
single map setting, as it produces more robust and stable
results, and shows that the presented policy can be imple-
mented in real-world where uncertain robot dynamics and
sensor inputs are present.

The experiments are performed on a quadrupedal Unitree
Gol robot. Although in simulation we used a wheeled robot,
the high-level control outputs of the network allow us to
easily transfer the learned policy to a different robot. The
only modifications we added to the robot are the aluminum
struts on top to ensure that obstacle pushing is possible. We
use cardboard boxes as obstacles, with size of around 50 x
50 x 50cm?, which is slightly smaller than those used in
training. Note that due to friction between the boxes and the
carpet floor, it’s very difficult for the robot to push more than
one box at once. The state space is constructed from external

sensors with two bird’s eye view cameras to track obstacles
and the robot using ArUco Markers [29]. From the camera
readings, we derive the robot pose, the obstacle vertices, and
compute a 2D grid to construct the state space. We note that
the above can easily be derived by robot internal sensors
such as camera, IMU, and LIDAR. The implementation of
obstacle detection and object mapping is outside the scope
of this paper, and we only show that the robot is able to
handle sensor noises and unexpected obstacle behaviours.

Our testing shows that the robot can consistently navigate
through the narrow passage in the presence of obstacles. In
Fig. [7| we show snapshots from a video recording of the
robot performing a NAMO task. We present an example
NAMO problem to the robot with three obstacles, where
at least two individual boxes need to be pushed to clear the
path. The robot is tasked to leave the room, and reach the
target location shown in the green dot. The robot immediately
chooses a trajectory that avoids collision with obstacle 3 (at
t = 4). It then starts to move box 2 via rotational pushing
just enough for an opening to occur (at ¢ = 10). The robot
then proceeds to push box 1 out of the doorway until it
reaches the goal position (at ¢ = 23). In our experiments,
we observe that it’s very typical for the robot to perform
pushing with only small nudges to rotate the obstacle, which
is often the most efficient way to manipulate obstacles to
create a small opening. We also note that almost all of the
pushing by the robot follow non-linear trajectories, and the
robot usually guides obstacles along a curved trajectory. This
is also the more efficient way for the robot to simultaneously
manipulate obstacles whilst adjusting its heading towards the
goal.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a deep learning method to solve
the Navigation Among Movable Obstacles (NAMO) problem
locally. Our approach allows the robot to perform non-
axial pushing to solve LP, NAMO problems with constant
computational complexity. We further demonstrated that the
method can be implemented on a real robot with sensor
noises. Our future works will be focused on stabilising



t = 0. Agent’s goal is to reach

t = 4. Agent moves down and

outside of the door avoids collision with box 3

Fig. 7.

t = 8. Agent moves box 2 to
create small opening

t = 10. Agent stops pushing box
2 and rotates towards box 1

t = 12. Agent starts pushing

box 1 out of the door t=23. Goal reached

Robot experiment conducted with a quadrupedal robot, the goal

position is shown as a green dot to be just outside of the room. We show that
the robot performs non-axis-aligned obstacle manipulation by first nudging
box 2 then subsequently pushing box 1 along its trajectory to create an
opening.

learning for agents trained in multiple maps, in order to
create a generalised agent that can solve NAMO problems in
any map configurations. We will also investigate how agents
can deal with obstacles with unknown movability and unseen
shapes by incorporating these complexities in the training.
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